Answer:
Perimeter = 21 units
Volume = 110 cubic units
Explanation:
Let the center of circle be (x,y).
![(x+2)^(2) +(y-7)^(2) = (x)^(2)+(y+2)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9il8bo2qroc3v9owycn1l94xp9bia547ab.png)
4x - 18y = - 45
![(x)^(2)+(y+2)^(2)=(x-2)^(2)+(y-2)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ygzlcc1a8wgi4i9d6t6gh9pz8wgoun7q9k.png)
4x + 8y = 4
x + 2y = 1
Solving these 2 equations,
4 - 26y = -45
y =
![(49)/(26)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1tnp02ztxygbqdwdgfiq221nu39x9fm2x5.png)
x =
![(-36)/(13)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hz4znz7lrmmmxf9cyrvpcyih861pje8le2.png)
radius = 3.35
Perimeter = 2
= 21 units
Volume of cylinder =
![\pi r^(2) h](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tjl7z34rf7husg6145774mxddq30ozqrjr.png)
We have to add the volumes of the cylinders.
Volume of smaller cylinder =
= 8
![\pi](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hvs09vob5j95u9hspf0ge6sceeo00vgyv4.png)
Volume of larger cylinder = 27
![\pi](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hvs09vob5j95u9hspf0ge6sceeo00vgyv4.png)
Total volume = 35
= 110 cubic feet