176k views
1 vote
What type of number is -12.123 repeating?

Choose all answers that apply:
(Choice A) A Whole number
(Choice B) B Integer
(Choice C) C Rational
(Choice D) D Irrational

Please Help me! :)

User Kenny Lim
by
8.4k points

2 Answers

1 vote

Answer:

C. Rational

Explanation:

While this number technically has no end, it repeats. This puts it in a special case.

First, lets look at the decimal portion and ignore the integer with it.

When looking at
0.123123123123 ..., we can convert this into the fraction
(123)/(999)

Now, we can multiply -12 by the denominator and add them together to get


-12*(999)/(999) =-(11988)/(999) \\-(11988)/(999)-(123)/(999) =-(12111)/(999)

As this number can be written as a fraction, it is a rational number.

User TheRock
by
8.9k points
4 votes

Answer:

C

Explanation:

A: a whole number is a positive number (not including 0) that does not have anything after the decimal.

B: an integer is 0, all the + and all the minus numbers that have nothing after the decimal.

D: an irrational number has an unending decimal like pi.

C: has a terminating decimal and is minus. It is C, rational.

User Onoya
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.