Answer:
d = -9
Explanation:
First lets input our x value for g(x)
This gives us the integral
![g(6) = \int\limits^6_(-4) {f(x)} \, dx](https://img.qammunity.org/2020/formulas/mathematics/middle-school/oe3esfduz7e5okn2pesibw6foqv831iw0o.png)
First, we need to split this integral into the different aspects of the piecewise function. This will give us
![g(6)=\int\limits^0_(-4) {4} \, dx +\int\limits^5_0 {-5} \, dx +\int\limits^6_5 {0} \, dx](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jgqh06l6nblow36xsgol7fpitg8uzgco8u.png)
Now, we need to evaluate each of these integrals
![\int\limits^0_(-4) {4} \, dx=4x|\limits^0_(-4)\\\\4(0)-4(-4)=16](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gn4k9b4f2tn350eh5xp4t8dakl4dcoiank.png)
![\int\limits^5_0 {-5} \, dx=-5x|\limits^5_0\\\\-5(5)--5(0)\\\\-25](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tbu3kuv5guko4k0f4oex72s1jabjjgf5q0.png)
![\int\limits^6_5 {0} \, dx=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nuze2ikd74zi7v46yvuhjks13mwwbggx42.png)
Now all we need to do is add the values of each of these integrals
![16-25=-9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9afm7sdtr3f9p4b86rdl6f5rs1bzygq3h4.png)