Answer:
The answers are as explained below:
Explanation:
E(X) = 750 and Var(X) = 62,500.
a. By chebychev’s inequality,
P (│x-μ│≥ k) ≤ σ²/k²
P (│x-750│≥ k) ≤ 62500/k²
Or P (│x-750│≤ R) ≥ 1- 62500/k²
Now, P (250 ≤ X ≤ 1250)
= P (250-750 ≤ X-750 ≤ 1250- 750)
= P (-500 ≤ X-750≤ 500)
Hence, P (│x-750│≤ 500) ≥ (1- 62500)/500²
Therefore, P (│x-750│≤ 3/4
b. Central Limit theorem (CLT)
Let X1, X2, X3,…, Xn be a sequence of independently and identically distributed (11a)
Random variables with mean µ and variance σ², and let X =∑_(i=0)^n▒Xi, then as n increases, the distribution of X, Fx(x) converges to the normal distribution N (n µ, n σ²).
c. N= 10000, µ=750, σ²=62500, σ= 250
Using the central limit theorem,
Zn= (ẍ- µ)/ (σ/√n)
P(745 ≤ Ẍ ≤ 755)= P((745-750)/(250/ √1000) ≤ Zn ≤ ((755-750)/ (250/ √1000))
= P (-2 ≤ Zn ≤ 2 )
=P (Zn≤ 2) - P (Zn≤ -2)
= 0.9773 - 0.0228
≃ 0.9545
d. Recall, ẍ =∑_(i=1)^n▒Xi/n
then, E (ẍ)= E{ ∑_(i=1)^n▒Xi/n}
∑_(i=1)^n▒Xi/n {E (Xi)}= ∑_(i=1)^n▒µ/n
(nµ)/ n= µ
E { ẍ }= µ
Also, Var (ẍ)= Var {∑_(i=1)^n▒Xi/n}
∑_(i=1)^n▒〖Var (Xi)〗 / n²
∑_(i=1)^n▒σ²/ n² = (n σ²)/n²
= σ²/n
Var (ẍ) = σ²/n
Thus, ẍ ≃ N (µ, σ²/n ) (Proved)