Answer:
E.
![2\sqrt[3]{4}\text{ in}](https://img.qammunity.org/2020/formulas/mathematics/high-school/o03squpc6nk1pmfmhxj8owoxai4r5thsiv.png)
Explanation:
Let a represent side length of the smaller cube.
We have been given that a certain clay cube has volume 64 cubic inches.
We will use volume of cube formula to answer our given problem.


Since the smaller clay cube has half the volume of the original cube. So volume of smaller cube would be:

Upon substituting our given values in volume formula, we will get:

Switch sides:

Take cube root of both sides:
![\sqrt[3]{a^3}=\sqrt[3]{32\text{ in}^3}](https://img.qammunity.org/2020/formulas/mathematics/high-school/no9k6ieiz5wkpvz5c2473ksadf1wf998di.png)
![a=\sqrt[3]{4* 8\text{ in}^3}](https://img.qammunity.org/2020/formulas/mathematics/high-school/d0p0u6zzy8cxfyky24am9ejeq2iuxw851e.png)
![a=\sqrt[3]{4}* \sqrt[3]{8\text{ in}^3}](https://img.qammunity.org/2020/formulas/mathematics/high-school/nw6zxelx3u95h1mg49gex57asa7bgbmwus.png)
![a=\sqrt[3]{4}* \sqrt[3]{2^3\text{ in}^3}](https://img.qammunity.org/2020/formulas/mathematics/high-school/xoymphtd4kishrugiamb5oeqyh9vgak7c5.png)
![a=\sqrt[3]{4}* 2\text{ in}](https://img.qammunity.org/2020/formulas/mathematics/high-school/jgcqjooxxyw2ga2e1gg0ms67gwflt7wjlf.png)
![a=2\sqrt[3]{4}\text{ in}](https://img.qammunity.org/2020/formulas/mathematics/high-school/uh9alosdysei3avkd6qhl2vg6c5tnd7mok.png)
Therefore, the side length of the smaller cube is
and option E is the correct choice.