Answer:
Step-by-step explanation:
M = Mass of Earth = 5.972 × 10²⁴ kg
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
r = Radius of Earth = 6371000 m
= Launch velocity = 14.8 km/s
= Final velocity
r = Orbit distance =
![3.84* 10^8\ m](https://img.qammunity.org/2020/formulas/physics/college/gkdmzi6sgoxe3fddzn0mfro0dvwvjsh13h.png)
m = Mass of satellite
As the energy of the system is conserved we have
![U_i+K_i=U_f+K_f\\\Rightarrow -(GMm)/(r)+(1)/(2)mv_i^2=-(GMm)/(R)+(1)/(2)mv_f^2\\\Rightarrow -(GM)/(r)+(1)/(2)v_i^2=-(GM)/(R)+(1)/(2)v_f^2\\\Rightarrow (1)/(2)v_f^2=(GM)/(R)-(GM)/(r)+(1)/(2)v_i^2\\\Rightarrow v_f=\sqrt{2GM((1)/(R)-(1)/(r))+v_i^2}\\\Rightarrow v_f=\sqrt{2* 6.67* 10^(-11)* 5.972* 10^(24)* ((1)/(6.371* 10^6)-(1)/(3.84* 10^8))+14800^2}\\\Rightarrow v_f=18493.53507\ m/s](https://img.qammunity.org/2020/formulas/physics/college/t7o9fsfi200xu5zapjgp5wyr8d601c4s1c.png)
The meteroid's speed as it hits the earth is 18493.53507 m/s