Answer:
1)
1st graph below x-intercepts S={-7,-1}
2) Opens Down Vertex: (-2,4) Axis of Symmetry
x-intercept
B Domain:
Range
C This function increases from
And decreases from
![(-2,\infty)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/as98eaq0n91l8i4egrk4p99i2ppxcgz7pp.png)
Explanation:
1) The vertex of the parabola is found when we rewrite the common formula:
Into this way:
The Vertex is found by:
![\\h=(-b)/(2a);k=(-\Delta )/(4a)\\f(x)=y=x^(2)+8x+16-9\Rightarrow y=x^(2)+8x+7\Rightarrow h=(-8)/(2)\Rightarrow h=-4\Rightarrow k=(-\Delta )/(4a)\Rightarrow \:k=-(8^(2)-(4*1*7))/(4*1)\Rightarrow k=-9\\ (h,k)\Rightarrow (-4,-9)](https://img.qammunity.org/2020/formulas/mathematics/college/4mt3uunsuq5hfxfmsi6anq28p61xvo01oq.png)
That's why we could rewrite the trinomial as this:
![f(x)=(x+4)^2-9\\](https://img.qammunity.org/2020/formulas/mathematics/college/63ub1y5fqrxkkzcwx8on1d4i32oa3opxlc.png)
Give the equation of the parabola's axis of symmetry, this is given by tracing a vertical line through the parabola vertex.
![x=-4](https://img.qammunity.org/2020/formulas/mathematics/college/wvzyemwe3v3nwgy07u4gzjvgd9ub6bpwgv.png)
The intercepts are the roots/zeros:
![y=x^(2)+8x+7\Rightarrow y=(x+7)(x+1) \Rightarrow x'=-7,\:x''=-1 \:S=\left \{ -7,-1 \right \}](https://img.qammunity.org/2020/formulas/mathematics/college/80pbt9kyjj7c0z5jwv8s2dusxyg08u90tq.png)
Domain:
Since the function has no restrictions therefore it is continuous and defined for any value of x ∈ Real Set
![D=(-\infty,\infty)](https://img.qammunity.org/2020/formulas/mathematics/college/8p6k73p32fy6q76k9pe8ifk6jyiqg5ifim.png)
Range
As the minimum point -9 is lowest y-coordinate the Range includes this value up to infinite values
![R=[-9,\infty)](https://img.qammunity.org/2020/formulas/mathematics/college/xlyczrnnl8iqlp0tkma41868k7i7lb5qlo.png)
(First Graph)
2)
![f(x)=-x^(2)-4x](https://img.qammunity.org/2020/formulas/mathematics/college/fmd6eacktibm10allfy5r5mmn2u5nortao.png)
As the parameter a <0 then the graph opens down.
Vertex:
![h=(-b)/(2a);k=(-\Delta )/(4a)\Rightarrow h=-\left ( (-4)/(2(-1)) \right ); k=-\left ( ((-4)^(2)-4(-1)(0))/(4(-1)) \right )\Rightarrow (-2,4)](https://img.qammunity.org/2020/formulas/mathematics/college/5iaaahj1mdqtc47nvcfmbitvwjqeqzkf52.png)
Axis of Symmetry
![x=-2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/q5l1a129xgxi5i1ksv4a87pka5x7u0p9nt.png)
x-intercept
![\\y=-x^(2)-4x\Rightarrow 0=-x^(2)-4x\Rightarrow x^(2)+4x=0\Rightarrow x(x+4)=0\Rightarrow S=\left \{ 0,-4 \right \}](https://img.qammunity.org/2020/formulas/mathematics/college/pq08ly11qmundld56dcwych1d8ru4u3l4h.png)
y-intercept
c=0 then (0,0).
B Domain:
Similarly, since the function has no restrictions therefore it is continuous it is defined for any value of x ∈ Real Set
![D=(-\infty,\infty)](https://img.qammunity.org/2020/formulas/mathematics/college/8p6k73p32fy6q76k9pe8ifk6jyiqg5ifim.png)
Range
![R=(-\infty,4]](https://img.qammunity.org/2020/formulas/mathematics/college/72p1nl0zw1tbkv5t34notxm8h7ltpmevyo.png)
C
This function increases from
Or we can represent this interval like this:
And decreases from
![(-2,\infty)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/as98eaq0n91l8i4egrk4p99i2ppxcgz7pp.png)