To solve this problem we will use the Newtonian theory about the speed of a body in space for which the speed of a body in the orbit of a planet is summarized as:
![v = \sqrt{(2GM)/(R)}](https://img.qammunity.org/2020/formulas/physics/college/yjb2lrjsdsfz6jmtkk9nq0o5u37fk9ie4a.png)
Where,
G = Gravitational Universal Constant
M = Mass of Planet
r = Radius of the planet ('h' would be the orbit from the surface)
The escape velocity is
![v = 14.9km/h = 14900m/s](https://img.qammunity.org/2020/formulas/physics/college/nsa2un2vllwswvvcwpobf6lq2z84c4peph.png)
Through this equation we can find the mass of the Planet in function of the distance, therefore
![M = (v^2R)/(2G)](https://img.qammunity.org/2020/formulas/physics/college/o7udqam6pnat6e5py3entl9q4p766rebgn.png)
![M = (14900^2R)/(2(6.67*10^(-11)))](https://img.qammunity.org/2020/formulas/physics/college/akp7jv5j7ddh17r9hs6dtzwganjflpqvol.png)
![M = 16.64*10^(17)R](https://img.qammunity.org/2020/formulas/physics/college/ceyji07l5irrnhao0kek9784js83z8bq7h.png)
The orbital velocity is
![v_o = \sqrt{(GM)/(R+h)}](https://img.qammunity.org/2020/formulas/physics/college/zj668vpoi6kea82a3wj5o0ga7v6181wp0u.png)
![9200^2 = ((6.67*10^(-11))(16.64*10^(17))R)/(R+1500*10^3)](https://img.qammunity.org/2020/formulas/physics/college/9zfvzcg6ukk4gdhy82ra0nfpij7bbzvzuy.png)
![11.1*10^7R = (R+15000*10^3)(9200)^2](https://img.qammunity.org/2020/formulas/physics/college/9oi3sn8g5wmeqdi5slltx0o3rddzh3xqfl.png)
![2.64*10^7R = 12.69*10^(13)](https://img.qammunity.org/2020/formulas/physics/college/gmqlrkm1vmj9l1cyown9srcq720tbevcoy.png)
![R = 4.81*10^6m](https://img.qammunity.org/2020/formulas/physics/college/iz2bkmlz1bis0ie8kg0syqz0whrltxl0dx.png)
The time period of revolution is,
![T = (2\pi(R+h))/(v_o)](https://img.qammunity.org/2020/formulas/physics/college/x26rc6vy71nna0pux9jm5ekxw0rpaxkmq5.png)
![T = (2\pi(4.81*10^6+1.5*10^6))/(9200)](https://img.qammunity.org/2020/formulas/physics/college/dbsibzfov5jt3c26nf6wzk9ygdkiec5s2y.png)
![T = 4307s](https://img.qammunity.org/2020/formulas/physics/college/t43wz0l4xsp19jqyqyef7jyvqt5e60m8fp.png)
![T = 72min = 1hour12min](https://img.qammunity.org/2020/formulas/physics/college/cqgnqwybnzicyxmei42gjkvs39bsggotw6.png)
Therefore the orbital period of the satellite is closes to 1 hour and 12 min