Answer:
![0.37163\ m/s^2](https://img.qammunity.org/2020/formulas/physics/high-school/pf9vv8oquk00o04tkf7k40qx9lod5thzfq.png)
0.07576
0.13235
Step-by-step explanation:
= Angular speed =
![(100)/(3)* (2\pi)/(60)](https://img.qammunity.org/2020/formulas/physics/high-school/uk2ola0zgmmby8ewosm5q5vhmn21a66w1m.png)
r = Distance from the center = 6.1 cm
g = Acceleration due to gravity = 9.81 m/s²
Acceleration of the seed would be
![a_c=r\omega^2\\\Rightarrow a_c=0.061* ((100)/(3)* (2\pi)/(60))^2\\\Rightarrow a_c=0.74326\ m/s^2](https://img.qammunity.org/2020/formulas/physics/high-school/erpf90hjuu4iqanysxxhd32vhr7eisu9ey.png)
The acceleration of the seed is
![0.74326\ m/s^2](https://img.qammunity.org/2020/formulas/physics/high-school/zndpfrgwod8wnisox52g3wy5adkaxe4t04.png)
Frictional force is given by
![f=\mu mg\\\Rightarrow ma_c=\mu mg\\\Rightarrow \mu=(a_c)/(g)\\\Rightarrow \mu=(0.74326)/(9.81)\\\Rightarrow \mu=0.07576](https://img.qammunity.org/2020/formulas/physics/high-school/ghwjpe0o28pwnibhx0i8fbrvi19ftlezc3.png)
The coefficient of friction is 0.07576
Transverse acceleration is given by
![a_t=r(\omega)/(t)](https://img.qammunity.org/2020/formulas/physics/high-school/fxqfzszh0ql9x16f6xpqdc8f7va6mjvfhr.png)
The resultant acceleration is given by
![a=√(a_c^2+a_t^2)\\\Rightarrow a=\sqrt{0.74326^2+(0.061* (100)/(3)* (2\pi)/(60)* (1)/(0.2))^2}\\\Rightarrow a=1.29842\ m/s^2](https://img.qammunity.org/2020/formulas/physics/high-school/j6rlfz0200r6xbo2fwmn21pljyax4vjlxx.png)
![\mu=(1.29842)/(9.81)\\\Rightarrow \mu=0.13235](https://img.qammunity.org/2020/formulas/physics/high-school/8jbq2ykn2eiqr01gr9215nw6yf33zthanj.png)
The coefficient of friction is 0.13235