216k views
2 votes
1.(16 pts.) Find the volume of the solid obtained by revolving the region enclosed by y = xex , y = 0 and x = 1 about the x-axis.

User Musiq
by
6.3k points

1 Answer

2 votes

Answer:

The Volume is 5.018 cubic units

Step-by-step explanation:

Volume Of A Solid Of Revolution

Let f(x) be a continuous function defined in an interval [a,b], if we take the area enclosed by f(x) between x=a, x=b and revolve it around the x-axis, we get a solid whose volume can be computed as


\displaystyle V=\pi \int_a^bf^2(x)dx

It's called the disk method. There are other available methods to compute the volume.

We have


f(x)=xe^x

And the boundaries defined as x=1, y=0 and revolved around the x-axis. The left endpoint of the integral is easily identified as x=0, because it defines the beginning of the region to revolve. So we need to compute


\displaystyle V=\pi \int_0^1(xe^x)^2dx=\pi \int_0^1x^2e^(2x)dx

We need to first determine the antiderivative


\displaystyle I=\int x^2e^(2x)dx

Let's integrate by parts using the formula


\displaystyle \int u.dv=u.v-\int v.du

We pick
u=x^2,\ dv=e^(2x)dx

Then
du=2xdx,\ v=(e^(2x))/(2)

Applying by parts:


\displaystyle I=x^2(e^(2x))/(2)-\int 2x(e^(2x))/(2)dx


\displaystyle I=(x^2e^(2x))/(2)-\int xe^(2x)dx

Now we solve


\displaystyle I_1=\int xe^(2x)dx

Making
u=x,\ dv=e^(2x)dx


\displaystyle du=dx,\ v=(e^(2x))/(2)

Applying by parts again:


\displaystyle I_1=x(e^(2x))/(2)-\int (e^(2x))/(2)dx


\displaystyle I_1=(xe^(2x))/(2)-(1)/(2)\int e^(2x)dx

The last integral is directly computed


\displaystyle \int e^(2x)dx=(e^(2x))/(2)

Replacing every integral computed above


\displaystyle I=(x^2e^(2x))/(2)-\left((xe^(2x))/(2)-(1)/(2)(e^(2x))/(2)\right)

Simplifying


\displaystyle I=\frac{\left(2x^2-2x+1\right)\mathrm{e}^(2x)}{4}

Now we compute the definite integral as the volume


V=\pi \left[\frac{\left(2(1)^2-2(1)+1\right)\mathrm{e}^(2(1))-\left(2(0)^2-2(0)+1\right)\mathrm{e}^(2(0))}{4}\right]

Finally


V=\pi \frac{\mathrm{e}^2-1}{4}=5.018

The Volume is 5.018 cubic units

User SwarthyMantooth
by
6.3k points