Answer:
a)
![V=4\pi\int\limits^8_2 {x\sqrt{9-(x-5)^(2)}} \, dx](https://img.qammunity.org/2020/formulas/physics/college/l3twtk9qz4ys3y2vduqhn7dr38abeh0fby.png)
b)
![V=20\pi\int\limits^3_(-3) {\sqrt{9-y^(2)}} \, dy](https://img.qammunity.org/2020/formulas/physics/college/xu6lsr19ucd70hkt90ot3asea6kd3kraiq.png)
c)
![V=90\pi ^(2)](https://img.qammunity.org/2020/formulas/physics/college/zhf2wcopdh73xcb55m7z7kt1wnr4iq4bag.png)
Step-by-step explanation
In order to solve these problems, we must start by sketching a drawing of what the graph of the problem looks like, this will help us analyze the drawing better and take have a better understanding of the problem (see attached pictures).
a)
On part A we must build an integral for the volume of the torus by using the shell method. The shell method formula looks like this:
![V=\int\limits^a_b {2\pi r y } \, dr](https://img.qammunity.org/2020/formulas/physics/college/zjs0r6zhax6qvfvxot9w9l4pt1trfzdf9o.png)
Where r is the radius of the shell, y is the height of the shell and dr is the width of the wall of the shell.
So in this case, r=x so dr=dx.
y is given by the equation of the circle of radius 3 centered at (5,0) which is:
![(x-5)^(2)+y^(2)=9](https://img.qammunity.org/2020/formulas/physics/college/62298vg0n4x6ali5dxjrv2z9umau7uobp6.png)
when solving for y we get that:
![y=\sqrt{9-(x-5)^(2)}](https://img.qammunity.org/2020/formulas/physics/college/3n1gy9nen1d6ht5hekz0hndhqq5pusfd4c.png)
we can now plug all these values into the shell method formula, so we get:
![V=\int\limits^8_2 {2\pi x \sqrt{9-(x-5)^(2)} } \, dx](https://img.qammunity.org/2020/formulas/physics/college/e4fz6gcfhn96ds2b7xx630u47n4tjswgdo.png)
now there is a twist to this problem since that will be the formula for half a torus.Luckily for us the circle is symmetric about the x-axis, so we can just multiply this integral by 2 to get the whole volume of the torus, so the whole integral is:
![V=\int\limits^8_2 {4\pi x \sqrt{9-(x-5)^(2)} } \, dx](https://img.qammunity.org/2020/formulas/physics/college/vlwthhmpdv0bfh8ubi0rx9tsqpkt10y0s2.png)
we can take the constants out of the integral sign so we get the final answer to be:
![V=4\pi\int\limits^8_2 {x\sqrt{9-(x-5)^(2)}} \, dx](https://img.qammunity.org/2020/formulas/physics/college/l3twtk9qz4ys3y2vduqhn7dr38abeh0fby.png)
b)
Now we need to build an integral equation of the torus by using the washer method. In this case the formula for the washer method looks like this:
![V=\int\limits^b_a{\pi(R^(2)-r^(2))} \, dy](https://img.qammunity.org/2020/formulas/physics/college/ilc1itqr0zzkqrm6o26fo3q1ce6slgjl1d.png)
where R is the outer radius of the washer and r is the inner radius of the washer and dy is the width of the washer.
In this case both R and r are given by the x-equation of the circle. We start with the equation of the circle:
![(x-5)^(2)+y^(2)=9](https://img.qammunity.org/2020/formulas/physics/college/62298vg0n4x6ali5dxjrv2z9umau7uobp6.png)
when solving for x we get that:
![x=\sqrt{9-y^(2)}+5](https://img.qammunity.org/2020/formulas/physics/college/bovg4yrsfxse1z5mlsaytiib4izd22zh5j.png)
the same thing happens here, the square root can either give you a positive or a negative value, so that will determine the difference between R and r, so we get that:
![R=\sqrt{9-y^(2)}+5](https://img.qammunity.org/2020/formulas/physics/college/3adg6cvz55snivb2uv915ob4r4zw4tgs9a.png)
and
![r=-\sqrt{9-y^(2)}+5](https://img.qammunity.org/2020/formulas/physics/college/cib3dpdm342lryxueiuqrqfngwcd5edaf2.png)
we can now plug these into the volume formula:
![V=\pi \int\limits^3_(-3){(5+\sqrt{9-y^(2)})^(2)-(5-\sqrt{9-y^(2)})^(2)} \, dy](https://img.qammunity.org/2020/formulas/physics/college/50ll9g5iszdzxk8qs3m5waztsgtqoeo4j9.png)
This can be simplified by expanding the perfect squares and when eliminating like terms we end up with:
![V=20\pi\int\limits^3_(-3) {\sqrt{9-y^(2)}} \, dy](https://img.qammunity.org/2020/formulas/physics/college/xu6lsr19ucd70hkt90ot3asea6kd3kraiq.png)
c) We are going to solve the integral we got by using the washer method for it to be easier for us to solve, so let's take the integral:
![V=20\pi\int\limits^3_(-3) {\sqrt{9-y^(2)}} \, dy](https://img.qammunity.org/2020/formulas/physics/college/xu6lsr19ucd70hkt90ot3asea6kd3kraiq.png)
This integral can be solved by using trigonometric substitution so first we set:
![y=3 sin \theta](https://img.qammunity.org/2020/formulas/physics/college/jat5vg5g6bq8z59fuwt1jkdrfpcp8ilt1w.png)
which means that:
![dy=3 cos \theta d\theta](https://img.qammunity.org/2020/formulas/physics/college/g26xsz02cnukvb9v6b8kc0l40xpni1mpff.png)
from this, we also know that:
![\theta=sin^(-1)((y)/(3))](https://img.qammunity.org/2020/formulas/physics/college/ja8tja5ark7vmzt5syqiqlgwhskfg3v1un.png)
so we can set the new limits of integration to be:
![\theta_(1)=sin^(-1)((-3)/(3))](https://img.qammunity.org/2020/formulas/physics/college/cmt206ajkci9z7bugjskxdz4wds1g1ulfe.png)
![\theta_(1)=-(\pi)/(2)](https://img.qammunity.org/2020/formulas/physics/college/jg3dauare9bspqjt9hn03mb5ybdc55xjty.png)
and
![\theta_(2)=sin^(-1)((3)/(3))](https://img.qammunity.org/2020/formulas/physics/college/r42tcz1e2tsof5a4nkzhhnihdd9qmod4mm.png)
![\theta_(2)=(\pi)/(2)](https://img.qammunity.org/2020/formulas/physics/college/9php8qwra5qiqczabnrt4mn6kdjulny01s.png)
so we can rewrite our integral:
![V=20\pi\int\limits^{(\pi)/(2)}_{-(\pi)/(2)} {\sqrt{9-(3 sin \theta)^(2)}} \, 3 cos \theta d\theta](https://img.qammunity.org/2020/formulas/physics/college/9fw33ouxdf1dol44dcioy9gdybim4gq8yi.png)
which simplifies to:
![V=60\pi\int\limits^{(\pi)/(2)}_{-(\pi)/(2)} {(\sqrt{9-(3 sin \theta)^(2)}} \, cos \theta d\theta](https://img.qammunity.org/2020/formulas/physics/college/avc6wiik0htorp8po6js3mgts7aoa5m6k0.png)
we can further simplify this integral like this:
![V=60\pi\int\limits^{(\pi)/(2)}_{-(\pi)/(2)} {(\sqrt{9-9 sin^(2) \theta}}} \, cos \theta d\theta](https://img.qammunity.org/2020/formulas/physics/college/xeumk279hu3cy0pd7lhduapqyhxm5b78q9.png)
![V=60\pi\int\limits^{(\pi)/(2)}_{-(\pi)/(2)} {3(\sqrt{1- sin^(2) \theta})}} \, cos \theta d\theta](https://img.qammunity.org/2020/formulas/physics/college/zlb06ere9u47tb6xod739vekaq1vn9xyi5.png)
![V=180\pi\int\limits^{(\pi)/(2)}_{-(\pi)/(2)} {(\sqrt{1- sin^(2) \theta})}} \, cos \theta d\theta](https://img.qammunity.org/2020/formulas/physics/college/nw7vrutzugcnapjuvrze1ndhmhnmdkfcu3.png)
![V=180\pi\int\limits^{(\pi)/(2)}_{-(\pi)/(2)} {(\sqrt{cos^(2) \theta})}} \, cos \theta d\theta](https://img.qammunity.org/2020/formulas/physics/college/xvmosh7wtswfsehe4b7jms6m2fdipxe5po.png)
![V=180\pi\int\limits^{(\pi)/(2)}_{-(\pi)/(2)} {(cos \theta})} \, cos \theta d\theta](https://img.qammunity.org/2020/formulas/physics/college/hhjzv8vst447y9jub4tkflr0ty8x4sfwix.png)
![V=180\pi\int\limits^{(\pi)/(2)}_{-(\pi)/(2)} {cos^(2) \theta}} \, d\theta](https://img.qammunity.org/2020/formulas/physics/college/r7gtbheczpewqcta7o5kwl1jmwx5o0vtok.png)
We can use trigonometric identities to simplify this so we get:
![V=180\pi\int\limits^{(\pi)/(2)}_{-(\pi)/(2)} {(1+cos 2\theta)/(2)}} \, d\theta](https://img.qammunity.org/2020/formulas/physics/college/631dhfv19cvh57axojqhvhlt9forrxrr43.png)
![V=90\pi\int\limits^{(\pi)/(2)}_{-(\pi)/(2)} {1+cos 2\theta}}} \, d\theta](https://img.qammunity.org/2020/formulas/physics/college/3mh54j6vq2ow4490mqsnn4jgakd7y83tp6.png)
we can solve this by using u-substitution so we get:
![u=2\theta](https://img.qammunity.org/2020/formulas/physics/college/bsv843q3ym1usd4unf7np911zljdn40kcc.png)
![du=2d\theta](https://img.qammunity.org/2020/formulas/physics/college/9eawyqfmrw1cu3vthtt4yor70m8i78idaw.png)
and:
![u_(1)=2(-(\pi)/(2))=-\pi](https://img.qammunity.org/2020/formulas/physics/college/7m5imaiufhn0edqe9qxcz68bti52awt1kt.png)
![u_(2)=2((\pi)/(2))=\pi](https://img.qammunity.org/2020/formulas/physics/college/k111sa0vh4o91nl5d1yourefvtmomhef02.png)
so when substituting we get that:
![V=45\pi\int\limits^(\pi)_(-\pi) {1+cos u}} \, du](https://img.qammunity.org/2020/formulas/physics/college/4bjpjgeup500rnauw338lbbyzwcfzovojs.png)
when integrating we get that:
![V=45\pi(u+sin u)\limit^(\pi)_(-\pi)](https://img.qammunity.org/2020/formulas/physics/college/2n22njybeexyf97p5vt5ikdgkju7o5r54h.png)
when evaluating we get that:
![V=45\pi[(\pi+0)-(-\pi+0)]](https://img.qammunity.org/2020/formulas/physics/college/a7mxep4nh25r33ow8mnhapqwtujtf2qnmb.png)
which yields:
![V=90\pi ^(2)](https://img.qammunity.org/2020/formulas/physics/college/zhf2wcopdh73xcb55m7z7kt1wnr4iq4bag.png)