Answer:
Step-by-step explanation:
height, h = 125 miles = 125 x 1609 m = 201125 m = 0.2 x 10^6 m
Rdaius, R = 2.44 x 10^6 m
Mass, M = 3.3 x 10^23 kg
Let vo be the orbital speed.
The formula for the orbital speed is given by
![v_(o)=\sqrt{(GM)/(R+h)}](https://img.qammunity.org/2020/formulas/physics/high-school/6dw42im0xen4rq8qnz8jd9gbxrxnpo6xbf.png)
where, M is the mass of mercury, R be the radius of mercury
![v_(o)=\sqrt{(6.67*10^(-11)\3.3* 10^(23))/(2.64* 10^(6))](https://img.qammunity.org/2020/formulas/physics/high-school/2mofge849r3jbwx52tl3fjdl08c70umct0.png)
vo = 2887.47 m/s
Time period, T = 2π(R+h) / vo
T = 2 x 3.14 x 2.64 x 10^6 / 2887.47
T = 5741.77 seconds
T = 1.6 hours