Answer:
613373.65233 m/s
Step-by-step explanation:
M = Mass of Sun =
![1.989* 10^(30)\ kg](https://img.qammunity.org/2020/formulas/physics/college/9dqpsazh1w4l2e8n7e8dtio3aehv75xlpd.png)
m = Mass of Earth
v = Velocity of Earth
r = Distance between Earth and Sun =
![147.12* 10^(9)\ m](https://img.qammunity.org/2020/formulas/physics/college/s2tv9nl9g3kgcyxm7j2hrkw2c1violskm3.png)
= Radius of Earth =
![6.371* 10^6\ m](https://img.qammunity.org/2020/formulas/physics/college/cw8s8otu5s1y8xtls34e5jg9eepp7kpym0.png)
= Radius of Sun =
![695.51* 10^6\ m](https://img.qammunity.org/2020/formulas/physics/college/avaqb2qn73wwb8zw3uw7xt1wdloo5zzst1.png)
In this system it is assumed that the potential and kinetic energies are conserved
![(1)/(2)Mv_2-(GMm)/(r_e+r_s)=0-(GMm)/(r)\\\Rightarrow v=\sqrt{2GM((1)/(r_e+r_s)-(1)/(r))}\\\Rightarrow v=\sqrt{2* 6.67* 10^(-11)* 1.989* 10^(30)((1)/(6.371* 10^6+695.51* 10^6)-(1)/(147.12* 10^(9)))}\\\Rightarrow v=613373.65233\ m/s](https://img.qammunity.org/2020/formulas/physics/college/ptqwy4jr19dmjgyr7fd6z1kydq5diaaj80.png)
The velocity of Earth would be 613373.65233 m/s