Answer:
1)
![Yield_1= (1)/((1+ 0.02 (1)/(2) 2.104)^2)=0.959](https://img.qammunity.org/2020/formulas/mathematics/college/y9hyth44w1mkqwkhtnuwjkcjkibtfyzfdt.png)
![Yield_2= (1)/((1+ 0.031 (1)/(2) 3.1415)^2)=0.909](https://img.qammunity.org/2020/formulas/mathematics/college/sm7aykee43w2rd7hr0gcqene9qrrw88j7d.png)
2)
![Cost/die_1 = (12)/(84 x 0.959)=0.149](https://img.qammunity.org/2020/formulas/mathematics/college/2rbni84vqkmw1rcg2vwtfhimvo12xvx7v0.png)
![Cost/die_2 = (15)/(100 x 0.909)=0.165](https://img.qammunity.org/2020/formulas/mathematics/college/xl7qopt3t49etzlrvg57tnyb34dloh88py.png)
3)
![Area_1 = (1.1 \pi (7.5cm)^2)/(84)=(2.104 cm^2)/(1.1)=1.913 cm^2](https://img.qammunity.org/2020/formulas/mathematics/college/cwsgkmpu7ipxkmscvlty1peixqdkvzisvj.png)
![Area_2 = (1.1 \pi (10cm)^2)/(100)=(3.1415 cm^2)/(1.1)=2.856 cm^2](https://img.qammunity.org/2020/formulas/mathematics/college/57zs5xnhy4l7vzsntwnhy9bjc8v2chm7a2.png)
And for the new yield we need to take in count the increase of 15% for the area and we got this:
![Yield_1= (1)/((1+(1.15) 0.02 (1)/(2) 1.913)^2)=0.957](https://img.qammunity.org/2020/formulas/mathematics/college/trl2y2pvj4f7yz428t85tk6vfscrc5mdj4.png)
![Yield_2= (1)/((1+(1.15) 0.031 (1)/(2) 2.856)^2)=0.905](https://img.qammunity.org/2020/formulas/mathematics/college/3qq2i0h4s6c3pyr00z5mtpzolvtfcla10g.png)
4)
=0.0426 defects/cm^2
=0.0260defects/cm^2
Explanation:
Part 1
For this part first we need to find the die areas with the following formula:
![Area= (W area)/(Number count)](https://img.qammunity.org/2020/formulas/mathematics/college/5y805lk6epx1zbohc4fmoa385yfxxjef64.png)
![Area_1 = (\pi (7.5cm)^2)/(84)=2.104 cm^2](https://img.qammunity.org/2020/formulas/mathematics/college/a8gihjm3pfk3scomdm85z854qms6awiks7.png)
![Area_2 = (\pi (10cm)^2)/(100)=3.1415 cm^2](https://img.qammunity.org/2020/formulas/mathematics/college/ci8c4w19dl733c7ocp6qlfhahwky73j1ek.png)
Now we can use the yield equation given by:
![Yield=(1)/((1+ DR(Area)/(2))^2)](https://img.qammunity.org/2020/formulas/mathematics/college/1nrzho2nceeo0uj3cf00p38h2ni82edcp7.png)
And replacing we got:
![Yield_1= (1)/((1+ 0.02 (1)/(2) 2.104)^2)=0.959](https://img.qammunity.org/2020/formulas/mathematics/college/y9hyth44w1mkqwkhtnuwjkcjkibtfyzfdt.png)
![Yield_2= (1)/((1+ 0.031 (1)/(2) 3.1415)^2)=0.909](https://img.qammunity.org/2020/formulas/mathematics/college/sm7aykee43w2rd7hr0gcqene9qrrw88j7d.png)
Part 2
For this part we can use the formula for cost per die like this:
![Cost/die = (Cost per day_i)/(Number count_i x Yield_i)](https://img.qammunity.org/2020/formulas/mathematics/college/lsj7yjxjuacum1wok40ex7b1pd5tx0y6cm.png)
And replacing we got:
![Cost/die_1 = (12)/(84 x 0.959)=0.149](https://img.qammunity.org/2020/formulas/mathematics/college/2rbni84vqkmw1rcg2vwtfhimvo12xvx7v0.png)
![Cost/die_2 = (15)/(100 x 0.909)=0.165](https://img.qammunity.org/2020/formulas/mathematics/college/xl7qopt3t49etzlrvg57tnyb34dloh88py.png)
Part 3
For this case we just need to calculate the new area and the new yield with the same formulas for part a, adn we got:
![Area_1 = (1.1 \pi (7.5cm)^2)/(84)=(2.104 cm^2)/(1.1)=1.913 cm^2](https://img.qammunity.org/2020/formulas/mathematics/college/cwsgkmpu7ipxkmscvlty1peixqdkvzisvj.png)
![Area_2 = (1.1 \pi (10cm)^2)/(100)=(3.1415 cm^2)/(1.1)=2.856 cm^2](https://img.qammunity.org/2020/formulas/mathematics/college/57zs5xnhy4l7vzsntwnhy9bjc8v2chm7a2.png)
And for the new yield we need to take in count the increase of 15% for the area and we got this:
![Yield_1= (1)/((1+(1.15) 0.02 (1)/(2) 1.913)^2)=0.957](https://img.qammunity.org/2020/formulas/mathematics/college/trl2y2pvj4f7yz428t85tk6vfscrc5mdj4.png)
![Yield_2= (1)/((1+(1.15) 0.031 (1)/(2) 2.856)^2)=0.905](https://img.qammunity.org/2020/formulas/mathematics/college/3qq2i0h4s6c3pyr00z5mtpzolvtfcla10g.png)
Part 4
First we can convert the area to cm^2 and we got 2 cm^2 the yield would be on this case given by:
![Yield= (1)/((1+DR(2cm^2)/(2))^2)=(1)/(1+(DR)^2)](https://img.qammunity.org/2020/formulas/mathematics/college/vp9i4e05xrz6z1k9ea7qqou0z8kfiph09b.png)
And if we solve for the Defect rate we got:
![DR= (1)/(√(Yield))-1](https://img.qammunity.org/2020/formulas/mathematics/college/2r5am1u6a0gmx6yvq5dfknsr0iak3i1pin.png)
Now we can find the previous and new defect rate like this:
=0.0426 defects/cm^2
And for the new defect rate we got:
=0.0260defects/cm^2