Answer:
sin θ = √17 / 17
Explanation:
Pythagorean identity:
1 + cot² θ = csc² θ
1 + (-4)² = csc² θ
17 = csc² θ
csc θ = ±√17
sin θ = ±1 / √17
cot θ < 0 and cos θ < 0, so θ is in the second quadrant. Therefore, sin θ > 0.
sin θ = 1 / √17
Or, as a proper fraction:
sin θ = √17 / 17