Answer:
See the proof below.
Explanation:
For this case we just need to apply properties of expected value. We know that the estimator is given by:
![S^2_p= ((n_1 -1) S^2_1 +(n_2 -1) S^2_2)/(n_1 +n_2 -2)](https://img.qammunity.org/2020/formulas/mathematics/college/5v9axn4o62kdpxlfjmwx0m3gwqjnb3rpkx.png)
And we want to proof that
![E(S^2_p)= \sigma^2](https://img.qammunity.org/2020/formulas/mathematics/college/9nvzzkq54e49hmoxfyi42e41rmvnsui67o.png)
So we can begin with this:
![E(S^2_p)= E(((n_1 -1) S^2_1 +(n_2 -1) S^2_2)/(n_1 +n_2 -2))](https://img.qammunity.org/2020/formulas/mathematics/college/jh6kmbzrlz4yx6e61ga55ugu94kkx7lect.png)
And we can distribute the expected value into the temrs like this:
![E(S^2_p)= ((n_1 -1) E(S^2_1) +(n_2 -1) E(S^2_2))/(n_1 +n_2 -2)](https://img.qammunity.org/2020/formulas/mathematics/college/1qjzqppoogkw4dfksxtcf6w1iu11r1kmg5.png)
And we know that the expected value for the estimator of the variance s is
, or in other way
so if we apply this property here we have:
![E(S^2_p)= ((n_1 -1 )\sigma^2_1 +(n_2 -1) \sigma^2_2)/(n_1 +n_2 -2)](https://img.qammunity.org/2020/formulas/mathematics/college/z3sjfstjbm51o3ve0fuklz06v25190ggcy.png)
And we know that
so using this we can take common factor like this:
![E(S^2_p)= ((n_1 -1) +(n_2 -1))/(n_1 +n_2 -2) \sigma^2 =\sigma^2](https://img.qammunity.org/2020/formulas/mathematics/college/j3gc8ih23nn9smlc4bgfcl2jdrz1v057o5.png)
And then we see that the pooled variance is an unbiased estimator for the population variance when we have two population with the same variance.