Answer:
Output voltage is 1.507 mV
Solution:
As per the question:
Nominal resistance, R =
![120\Omega](https://img.qammunity.org/2020/formulas/physics/college/ojeaoqg5f84kogas0dc59hui69wocuwaaq.png)
Fixed resistance, R =
![120\Omega](https://img.qammunity.org/2020/formulas/physics/college/ojeaoqg5f84kogas0dc59hui69wocuwaaq.png)
Gauge Factor, G.F = 2.01
Supply Voltage,
![V_(s) = 3\ V](https://img.qammunity.org/2020/formulas/physics/college/wj6znn60v2ph9dvqe60nn4ir1tqxckejc7.png)
Strain,
![\epsilon = 1000* 10^(-6)\ strain](https://img.qammunity.org/2020/formulas/physics/college/jsa8vu1xihizsxabixy2zrrkadqkgxp3jf.png)
Now,
To calculate the output voltage,
:
WE know that strain is given by:
![\epsilon = ((R + R')^(2)V_(o))/(RR'V_(s)* G.F)](https://img.qammunity.org/2020/formulas/physics/college/drx80tjz9l47950s5k8ilfea559m52ip4h.png)
Thus
![V_(o) = (RR'V_(s)\epsilon * G.F)/((R + R')^(2))](https://img.qammunity.org/2020/formulas/physics/college/i5qflp28kexzqp62yw4e3pyvsyohzj1mf8.png)
Now, substituting the suitable values in the above eqn:
![V_(o) = (120* 120* 3* 1000* 10^(-6)* 2.01)/((120 + 120)^(2))](https://img.qammunity.org/2020/formulas/physics/college/5rvwh8bjocwromhlsq6g242soob9g022g9.png)
![V_(o) = 1.507\ mV](https://img.qammunity.org/2020/formulas/physics/college/hhwcyy4q5g0kyjbvtkmfyj6wr8qapeft37.png)