Answer:
About center ,
![I_o=(1)/(12)ML^2](https://img.qammunity.org/2020/formulas/physics/college/kfx8irp2czfaazlo15nixhtd7s1zet8wv9.png)
About an end ,
![I=(1)/(3)ML^2](https://img.qammunity.org/2020/formulas/physics/college/jl6oc82zjn36j9qpbzhv4z3ceqnctb16zm.png)
Step-by-step explanation:
Given that
Mass =m
Length = L
The moment of inertia of rod about center given as
![I_o=(1)/(12)ML^2](https://img.qammunity.org/2020/formulas/physics/college/kfx8irp2czfaazlo15nixhtd7s1zet8wv9.png)
We know that the moment of inertia about a parallel axis which at a distance d from the center given as
I=Io+ m d²
The distance of one end from center
![d=(L)/(2)](https://img.qammunity.org/2020/formulas/physics/college/5hgtpuogbarr7h0midcawm5nzjf1asjbmn.png)
![I=I_o+md^2](https://img.qammunity.org/2020/formulas/physics/college/zhn37wf1uxpzi2ob01h3gy77oqksgft8y9.png)
![I=(1)/(12)ML^2+M* (L^2)/(4)](https://img.qammunity.org/2020/formulas/physics/college/lajzljov6g6bta27rnxek1syi52xq0siqo.png)
![I=(1)/(12)ML^2+ (1)/(4)ML^2](https://img.qammunity.org/2020/formulas/physics/college/hu3dfq6bcnpxyh81h61sjwreeyll3t0tr0.png)
![I=(1)/(3)ML^2](https://img.qammunity.org/2020/formulas/physics/college/jl6oc82zjn36j9qpbzhv4z3ceqnctb16zm.png)