80.4k views
2 votes
Determine the product, h(x), of the linear and quadratic factors.

f(x) = x2 - 4x = 1, g(x) = x +4

1 Answer

3 votes

Answer:


h(x)=x^3-17x-4

Explanation:

Given
f(x)=x^2 - 4x -1\ and\ g(x)=x+4\\


h(x)=f(x)* g(x)


(x^2-4x-1)(x+4)\ \ \\Distribute\ parenthesis\\=x^2x+x^2* \:4+\left(-4x\right)x+\left(-4x\right)* \:4+\left(-1\right)x+\left(-1\right)* \:4

Apply minus-plus rules


+(-a)=-a


=x^2x+4x^2-4x(x)-4*\:4x-1*\:x-1*\:4


\\Simplify\\=x^3+4x^2-4x^2-16x-x-4\\=x^3-16x-x-4\\=x^3-17x-4


h(x)=x^3-17x-4

User LeeG
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories