Answer:
f(x) = 3x^3 -23x^2 +37x +15
Explanation:
Perform the multiplication. The distributive property is useful for this.
f(x) = (x - 3)(x - 5)(3x + 1)
= (x -3)(x(3x +1) -5(3x +1)) . . . . distribute the second factor to the third
= (x -3)(3x^2 +x -15x -5) . . . . . finish the distribution
= (x -3)(3x^2 -14x -5) . . . . . . . .collect terms
= x(3x^2 -14x -5) -3(3x^2 -14x -5) . . . distribute the first factor
= 3x^3 -14x^2 -5x -9x^2 +42x +15 . . . finish the distribution
f(x) = 3x^3 -23x^2 +37x +15 . . . . . . . . collect terms