89.0k views
4 votes
Let A⊆R, let f:A⟶R and let c∈R be a cluster point of A. If lim┬(x⟶c)⁡f exists, and if |f| denotes the function defined for x∈A by |f|(x)≔|f(x)|, prove that |lim┬(x⟶c) |⁡f |=|lim┬(x⟶c)⁡|f|

1 Answer

4 votes

Answer with Step-by-step explanation:

We are given that


A\subseteq R

Let f:
A\rightarrow R


c\in R be a cluster point of A.


\lim_((x\rightarrow c))f(x) exist let


\lim_((x\rightarrow c))f(x)=L

If
\mid f\mid denotes the function and


\mid f(x)\mid=\mid f\mid (x) for
x\in A

We have to prove that
\mid \lim_(x\rightarrow c)f(x)\mid=\lim_(x\rightarrow c)\mid f\mid (x)


\mid \lim_((x\rightarrow c))f(x)\mid=\lim_((x\rightarrow c))\mid f(x)\mid

Substitute the value then we get


\mid \lim_((x\rightarrow c))f(x)\mid=\mid L\mid =\lim_((x\rightarrow c))\mid f\mid (x)

Hence proved.

User Clayton Selby
by
7.4k points