Answer:
a.
![P(x\geq 75)\leq 0.67](https://img.qammunity.org/2020/formulas/mathematics/college/r8lt2740yst2tpys9zoe7rd5b7f6yi8et2.png)
b.P(40<x<60)
0.75
Explanation:
We are given that
Mean =E(X)=50
a.We have to find the probability when x greater than or equal to 75.
Markovs inequality
![P(x\geq k)\leq (E(X))/(k)](https://img.qammunity.org/2020/formulas/mathematics/college/elkjbai1ys48qweoj5mczdw09ho8ujek67.png)
By using Markovs inequality and substitute k=75
![P(x\geq 75)\leq (E(x))/(75)](https://img.qammunity.org/2020/formulas/mathematics/college/rh3etb6jztinakt2mljzy8wxilskiguh5w.png)
![P(x\geq 75)\leq (50)/(75)=(2)/(3)=0.67](https://img.qammunity.org/2020/formulas/mathematics/college/5hffrtnm9i6uu7p32f1rpyxgt429j4f8hu.png)
![P(x\geq 75)\leq 0.67](https://img.qammunity.org/2020/formulas/mathematics/college/r8lt2740yst2tpys9zoe7rd5b7f6yi8et2.png)
b.We have to find P(40<x<60)
Variance=
![\sigma=25](https://img.qammunity.org/2020/formulas/mathematics/college/g9otar02bvopyoodm8vyp2zp9ybyrryiyf.png)
Chebyshev's inequality:
![P(\mid X-E(X)\geq k)\leq (\sigma^2)/(k^2)](https://img.qammunity.org/2020/formulas/mathematics/college/b7o0obo3hxyoca0hfaew6khnh32sm4xbgp.png)
Because 50+10=60 and 50-10=40
Therefore, k=10
By using Chebyshev's inequality and substitute k=10
because 50+10=60 and 50-10=40
![P(\mid x-50\mid \geq 10)\leq ((25)^2)/(10^2)](https://img.qammunity.org/2020/formulas/mathematics/college/l7q7nhc4ihr7yzpq7gpbnktsn7uklavefo.png)
![P(\mid x-50\mid \geq 10)\leq (1)/(4)](https://img.qammunity.org/2020/formulas/mathematics/college/tqhxmsu4pc2l9njmowg2niclvt6ju5gjov.png)
![P(\mid x-50\mid <10)\geq 1-(1)/(4)=(3)/(4)=0.75](https://img.qammunity.org/2020/formulas/mathematics/college/u931wk1b29m4ffe0l4n4h3v6vwmhrno5z1.png)
Hence, P(40<x<60)
0.75