Answer:
a)
![P(1 \leq X \leq 40)](https://img.qammunity.org/2020/formulas/mathematics/college/dwo7d0fxnhqjmu8odee5tjcn7d5yo295x7.png)
In order to find this probability we can use excel with the following code:
=GAMMA.DIST(40;5,8,TRUE)-GAMMA.DIST(1,5,8,TRUE)
And we got:
![P(1 \leq X \leq 40)=0.560](https://img.qammunity.org/2020/formulas/mathematics/college/kqwadjfapis3zl4in7odbltzqsikdavpip.png)
b)
![P(X \geq 40)=1-P(X<40)](https://img.qammunity.org/2020/formulas/mathematics/college/licrq33i8bfz9xxsg3f8htmq24q92oue9k.png)
In order to find this probability we can use excel with the following code:
=1-GAMMA.DIST(40,5,8,TRUE)
And we got:
![P(X \geq 40)=1-P(X<40)=0.440](https://img.qammunity.org/2020/formulas/mathematics/college/wg7qw2u9wl1q337kqkuf0u7bwqllg0l74d.png)
Explanation:
Previous concepts
The Gamma distribution "is a continuous, positive-only, unimodal distribution that encodes the time required for
events to occur in a Poisson process with mean arrival time of
"
Solution to the problem
Let X the random variable that represent the lifetime for transistors
For this case we have the mean and the variance given. And we have defined the mean and variance like this:
(1)
(2)
From this we can solve
and [/tex]\beta[/tex]
From the condition (1) we can solve for
and we got:
(3)
And if we replace condition (3) into (2) we got:
![320= (40)/(\beta) \beta^2 = 40 \beta](https://img.qammunity.org/2020/formulas/mathematics/college/nkndpbpb742cics0ezwp33jl23u6wafww8.png)
And solving for
![\beta = 8](https://img.qammunity.org/2020/formulas/mathematics/college/li0binf3futxs8slzsqyr6ncyefyry8rv7.png)
And now we can use condition (3) to find
![\alpha](https://img.qammunity.org/2020/formulas/physics/high-school/dtoxlramsacz7r2b4bxjmmb5pkc4nghi04.png)
![\alpha=(40)/(8)=5](https://img.qammunity.org/2020/formulas/mathematics/college/awwoz7l0kvp7atgj03w568la2lssuppj3d.png)
So then we have the parameters for the Gamma distribution. On this case
![X \sim Gamma (\alpha= 5, \beta=8)](https://img.qammunity.org/2020/formulas/mathematics/college/r9jlmm9u6ove9sc3khe7xac1w96ikirgzc.png)
Part a
For this case we want this probability:
![P(1 \leq X \leq 40)](https://img.qammunity.org/2020/formulas/mathematics/college/dwo7d0fxnhqjmu8odee5tjcn7d5yo295x7.png)
In order to find this probability we can use excel with the following code:
=GAMMA.DIST(40;5,8,TRUE)-GAMMA.DIST(1,5,8,TRUE)
And we got:
![P(1 \leq X \leq 40)=0.560](https://img.qammunity.org/2020/formulas/mathematics/college/kqwadjfapis3zl4in7odbltzqsikdavpip.png)
Part b
For this case we want this probability:
![P(X \geq 40)=1-P(X<40)](https://img.qammunity.org/2020/formulas/mathematics/college/licrq33i8bfz9xxsg3f8htmq24q92oue9k.png)
In order to find this probability we can use excel with the following code:
=1-GAMMA.DIST(40,5,8,TRUE)
And we got:
![P(X \geq 40)=1-P(X<40)=0.440](https://img.qammunity.org/2020/formulas/mathematics/college/wg7qw2u9wl1q337kqkuf0u7bwqllg0l74d.png)