174k views
3 votes
Finddy/dxandd2y/dx2.x = t2 + 7, y = t2 + 5tdydx = d2ydx2 = For which values of t is the curve concave upward? (Enter your answer using interval notation.)=

User Dreftymac
by
8.4k points

1 Answer

6 votes


\begin{cases}x(t)=t^2+7\\y(t)=t^2+5t\end{cases}

By the chain rule,


(\mathrm dy)/(\mathrm dx)=(\mathrm dy)/(\mathrm dt)(\mathrm dt)/(\mathrm dx)=((\mathrm dy)/(\mathrm dt))/((\mathrm dx)/(\mathrm dt))

We have


(\mathrm dx)/(\mathrm dt)=2t


(\mathrm dy)/(\mathrm dt)=2t+5


\implies(\mathrm dy)/(\mathrm dx)=(2t+5)/(2t)=\boxed{1+\frac5{2t}}

Notice that this derivative is a function of
t. Let
f(t)=(\mathrm dy)/(\mathrm dx). Then by the chain rule,


(\mathrm d^2y)/(\mathrm dx^2)=(\mathrm df)/(\mathrm dx)=(\mathrm df)/(\mathrm dt)(\mathrm dt)/(\mathrm dx)=((\mathrm df)/(\mathrm dt))/((\mathrm dx)/(\mathrm dt))

We have


(\mathrm df)/(\mathrm dt)=-\frac5{2t^2}


\implies(\mathrm d^2y)/(\mathrm dx^2)=\frac{-\frac5{2t^2}}{2t}=\boxed{-\frac5{4t^3}}

The curve is concave upward wherever the second derivative is positive. This happens whenever
t^3<0, or
\boxed{t<0}.

User AmanKumar
by
8.2k points