30.1k views
1 vote
Use the matrix capabilities of a graphing utility to write the augmented matrix corresponding to the system of equations in reduced row-echelon form. Then solve the system. (If there is no solution, enter NO SOLUTION. If the system is dependent, express x, y, z, and w in terms of the parameter

a.) x + 2y + z + 3w = 0 x − y + w = 0 y − z + 2w = 0 (x, y, z, w) =

User Miturbe
by
5.6k points

1 Answer

4 votes

Answer:

x =-2t , y = -t, z= t

Explanation:

x+2y+z+3w=0

x-y+w=0

y-z+2w=0

The augmented system would be given by:


\begin{matrix}1 & 2 & 1 & 3 & 0\\1 & -1 & 0 & 1 & 0\\0 & 1 & -1 & 2 & 0\\\end{matrix}

Now we can do operations in order to reduce it to the row echelon form

1) R1 *(-1) + R2


\begin{pmatrix}1 & 2 & 1 & 3 & 0\\0 & -3 & -1 & -2 & 0\\0 & 1 & -1 & 2 & 0\\\end{pmatrix}

2) R2 *(-1/3)


\begin{pmatrix}1 & 2 & 1 & 3 & 0\\0 & 1 & 1/3 & 2/3 & 0\\0 & 1 & -1 & 2 & 0\\\end{pmatrix}

3) R2*(-1)+R3


\begin{pmatrix}1 & 2 & 1 & 3 & 0\\0 & 1 & 1/3 & 2/3 & 0\\0 & 0 & -4/3 & 4/3 & 0\\\end{pmatrix}

4) R3*(-3/4)


\begin{pmatrix}1 & 2 & 1 & 3 & 0\\0 & 1 & 1/3 & 2/3 & 0\\0 & 0 & 1 & -1 & 0\\\end{pmatrix}

5) R3(-1/3) + R2; R3(-1) +R1


\begin{pmatrix}1 & 2 & 0 & 4 & 0\\0 & 1 & 0 & 1 & 0\\0 & 0 & 1 & -1 & 0\\\end{pmatrix}

6) R2(-2) +R1


\begin{pmatrix}1 & 0 & 0 & 2 & 0\\0 & 1 & 0 & 1 & 0\\0 & 0 & 1 & -1 & 0\\\end{pmatrix}

Let w=t a free variable then the solution is given by:

x =-2t , y = -t, z= t

User Kpower
by
5.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.