Answer:
x =-2t , y = -t, z= t
Explanation:
x+2y+z+3w=0
x-y+w=0
y-z+2w=0
The augmented system would be given by:
![\begin{matrix}1 & 2 & 1 & 3 & 0\\1 & -1 & 0 & 1 & 0\\0 & 1 & -1 & 2 & 0\\\end{matrix}](https://img.qammunity.org/2020/formulas/mathematics/high-school/wlmij9w4xt9p5d9en2z2geia9pem0n7cqo.png)
Now we can do operations in order to reduce it to the row echelon form
1) R1 *(-1) + R2
![\begin{pmatrix}1 & 2 & 1 & 3 & 0\\0 & -3 & -1 & -2 & 0\\0 & 1 & -1 & 2 & 0\\\end{pmatrix}](https://img.qammunity.org/2020/formulas/mathematics/high-school/4jcgpzxmfrzy0lavhzyhxk5qze2yf3jqhz.png)
2) R2 *(-1/3)
![\begin{pmatrix}1 & 2 & 1 & 3 & 0\\0 & 1 & 1/3 & 2/3 & 0\\0 & 1 & -1 & 2 & 0\\\end{pmatrix}](https://img.qammunity.org/2020/formulas/mathematics/high-school/aueqnhazhef3ssvxm1dps1sih3fhds0ca3.png)
3) R2*(-1)+R3
![\begin{pmatrix}1 & 2 & 1 & 3 & 0\\0 & 1 & 1/3 & 2/3 & 0\\0 & 0 & -4/3 & 4/3 & 0\\\end{pmatrix}](https://img.qammunity.org/2020/formulas/mathematics/high-school/ndf2bhc503maeusk3jufpaf4zgsgukl4q4.png)
4) R3*(-3/4)
![\begin{pmatrix}1 & 2 & 1 & 3 & 0\\0 & 1 & 1/3 & 2/3 & 0\\0 & 0 & 1 & -1 & 0\\\end{pmatrix}](https://img.qammunity.org/2020/formulas/mathematics/high-school/ny003dbiwk7742s6vy2xhy1gtxk5n9jao1.png)
5) R3(-1/3) + R2; R3(-1) +R1
![\begin{pmatrix}1 & 2 & 0 & 4 & 0\\0 & 1 & 0 & 1 & 0\\0 & 0 & 1 & -1 & 0\\\end{pmatrix}](https://img.qammunity.org/2020/formulas/mathematics/high-school/e0u8d25c8ten3qiofo2elr3ymu95lkx3bg.png)
6) R2(-2) +R1
![\begin{pmatrix}1 & 0 & 0 & 2 & 0\\0 & 1 & 0 & 1 & 0\\0 & 0 & 1 & -1 & 0\\\end{pmatrix}](https://img.qammunity.org/2020/formulas/mathematics/high-school/pjb2gvc5tyztgowo8yxcmw53dp4qr22of4.png)
Let w=t a free variable then the solution is given by:
x =-2t , y = -t, z= t