Answer:
r =-0.996
Explanation:
The correlation coefficient is a "statistical measure that calculates the strength of the relationship between the relative movements of two variables". It's denoted by r and its always between -1 and 1.
In order to calculate the correlation coefficient we can begin doing the following table:
n x y xy x*x y*y
1 4 43.65 174.6 16 1905.323
2 5 40.74 203.7 25 1659.748
3 6 38.53 231.18 36 1484.561
4 7 37.22 260.54 49 1385.323
5 8 33.01 264.08 64 1089.660
6 9 30.61 275.49 81 936.972
7 10 29.89 298.9 100 893.412
8 11 27.18 298.98 121 738.752
9 12 25.87 310.44 144 669.257
10 13 23.56 306.28 169 555.0974
11 14 22.25 311.50 196 495.063
12 15 18.64 279.60 225 347.450
13 16 18.33 293.28 256 335.989
14 17 16.92 287.64 289 286.286
15 18 13.81 248.58 324 190.716
16 19 9.9 188.10 361 98.01
![n =16 \sum x \sum y \sum xy \sum x^2 \sum y^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/ene6nv7rezso58s37t97q08pz7uhqiiysj.png)
n=16
And in order to calculate the correlation coefficient we can use this formula:
![r=(n(\sum xy)-(\sum x)(\sum y))/(√([n\sum x^2 -(\sum x)^2][n\sum y^2 -(\sum y)^2]))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h2kbdui9ydpsixheffu6h8g6vjzzbhe9ox.png)
![r=(16(4232.89)-(184)(430.11))/(√([16(2456) -(184)^2][16(13071.600) -(430.11)^2]))=-0.996](https://img.qammunity.org/2020/formulas/mathematics/high-school/zp7cgntljrh4vc3mdgrzlpcavfa8sw3jhj.png)
So then the correlation coefficient would be r =-0.996