135k views
5 votes
Use matrix addition to solve this equation: B + 15 −7 4 0 1 2 = 1 2 12 4 0 2 b11 = b12 = b13 = b21 = 4 b22 = −1 b23 = 0

User Rghome
by
5.5k points

2 Answers

2 votes

Answer:

-14

9

8

Explanation:

edge 2021

User Wade Mueller
by
6.0k points
2 votes

Answer:


b_(11)=-14,b_(12)=9,b_(13)=8,b_(21)=4,b_(22)=-1,b_(23)=0

Explanation:

The given matrix addition is


B+\begin{bmatrix}15&-7&4\\ 0&1&2\end{bmatrix}=\begin{bmatrix}1&2&12\\ 4&0&2\end{bmatrix}

We need to find the elements of matrix B.

Let
B=\begin{bmatrix}b_(11)&b_(12)&b_(13)\\ b_(21)&b_(22)&b_(23)\end{bmatrix}

Substitute the value of matrix.


\begin{bmatrix}b_(11)&b_(12)&b_(13)\\ b_(21)&b_(22)&b_(23)\end{bmatrix}+\begin{bmatrix}15&-7&4\\ 0&1&2\end{bmatrix}=\begin{bmatrix}1&2&12\\ 4&0&2\end{bmatrix}

After addition of two matrix we get


\begin{bmatrix}b_(11)+15&b_(12)-7&b_(13)+4\\ b_(21)+0&b_(22)+1&b_(23)+2\end{bmatrix}=\begin{bmatrix}1&2&12\\ 4&0&2\end{bmatrix}

On equating both sides.


b_(11)+15=1\Rightarrow b_(11)=-14


b_(12)-7=2\Rightarrow b_(12)=9


b_(13)+4=12\Rightarrow b_(13)=8


b_(21)+0=4\Rightarrow b_(21)=4


b_(22)+1=0\Rightarrow b_(22)=-1


b_(23)+2=2\Rightarrow b_(23)=0

Therefore, the elements of matrix B are
b_(11)=-14,b_(12)=9,b_(13)=8,b_(21)=4,b_(22)=-1,b_(23)=0.

User Fcortes
by
5.0k points