Answer:
![\approx1.49<\sigma<3.97](https://img.qammunity.org/2020/formulas/mathematics/college/xecwiia3xudypa2aaa3wkmys7ethvzf3d0.png)
Explanation:
We know that the confidence interval for population standard deviation is given by :-
![\sqrt{((n-1)s^2)/(\chi^2_(\alpha/2))}<\sigma<\sqrt{((n-1)s^2)/(\chi^2_(1-\alpha/2))}](https://img.qammunity.org/2020/formulas/mathematics/college/zwuh42z40eufai1zehgz6yxqb2m738m2xd.png)
, where n= sample size
s = sample standard deviation.
and
= Chi-square critical value for degree of freedom (n-1) and significance level (
).
Given :
![\alpha=1-0.99=0.01](https://img.qammunity.org/2020/formulas/mathematics/college/hw7rszmzf85gg8hr51vodzmidxo6k6eals.png)
n= 16
Critical ch-square values for degree of freedom 15 and
will be :
![\chi_(\alpha/2)=\chi_(0.005)=32.80132](https://img.qammunity.org/2020/formulas/mathematics/college/64rkdme5gl3tm2d2n7ax9u7073rzallnpc.png)
![\chi_(1-\alpha/2)=\chi_(0.995)=4.6009](https://img.qammunity.org/2020/formulas/mathematics/college/76fypxuxnqb6jwyr3ffl9y0pph3k7kh5h1.png)
Then , the required 99% confidence interval for the population standard deviation will be :
![\sqrt{((15)(2.2)^2)/(32.80132)}<\sigma<\sqrt{((15)(2.2)^2)/(4.6009)}](https://img.qammunity.org/2020/formulas/mathematics/college/xyytjqyam1z2na07rb6kumrmbf5dngk4bb.png)
![√(2.21332556129)<\sigma<√(15.779521398)](https://img.qammunity.org/2020/formulas/mathematics/college/gw6mvcnwp1bu5vhl1wr7vqr6wzoyic64k4.png)
![1.48772496157<\sigma<3.97234457191](https://img.qammunity.org/2020/formulas/mathematics/college/5a1a8w7lr667yiuglzqqnhhkaynp1sj5uo.png)
![\approx1.49<\sigma<3.97](https://img.qammunity.org/2020/formulas/mathematics/college/xecwiia3xudypa2aaa3wkmys7ethvzf3d0.png)
Hence, the a 99% confidence interval for the population standard deviation :