76.5k views
1 vote
A random sample of 16 men have a mean height of 67.5 inches and a standard deviation of 2.22.2 inches. Construct a​ 99% confidence interval for the population standard​ deviation, sigmaσ. Assume the sample is from a normally distributed population.

1 Answer

1 vote

Answer:
\approx1.49<\sigma<3.97

Explanation:

We know that the confidence interval for population standard deviation is given by :-


\sqrt{((n-1)s^2)/(\chi^2_(\alpha/2))}<\sigma<\sqrt{((n-1)s^2)/(\chi^2_(1-\alpha/2))}

, where n= sample size

s = sample standard deviation.


\chi^2_(\alpha/2) and
\chi^2_(1-\alpha/2)= Chi-square critical value for degree of freedom (n-1) and significance level (
\alpha).

Given :
\alpha=1-0.99=0.01

n= 16

Critical ch-square values for degree of freedom 15 and
\alpha=0.01will be :


\chi_(\alpha/2)=\chi_(0.005)=32.80132


\chi_(1-\alpha/2)=\chi_(0.995)=4.6009

Then , the required 99% confidence interval for the population standard​ deviation will be :


\sqrt{((15)(2.2)^2)/(32.80132)}<\sigma<\sqrt{((15)(2.2)^2)/(4.6009)}


√(2.21332556129)<\sigma<√(15.779521398)


1.48772496157<\sigma<3.97234457191


\approx1.49<\sigma<3.97

Hence, the a​ 99% confidence interval for the population standard​ deviation :