Answer:
E.) conservation of angular momentum
Step-by-step explanation:
The angular momentum is defined as:
x

where
is the radius of the star,
is the mass and
the angular velocity.
and angular momentum is an amount that is conserved, so the angular momentum before the star is compressed must be equal to the angular momentum after the star was compressed:
x
x

the second radius is smaller than the first radius, since the star shrinked, the second angular velocity must be greater that the first.
In other words, the angular velicity increases as the star shrinks because of the conservation of angular momentum.