Answer:
3.06 x 10^{-5} N
Step-by-step explanation:
mass M1 = 191 kg
mass M2 = 572 kg
mass M3 = 50 kg
distance apart (d) = 0.406 m
gravitational constant (G) = 6.62 x 10^{-11} m^{2}/kg^{2}
Find the magnitude of the net gravitational force exerted by the two larger masses on the 50 kg mas
the net gravitational force acting on the 50 kg mass (M3) = gravitational force exerted by the larger mass (M2) - gravitational force exerted by the smaller mass (M1)
⇒
![(GM2.M3)/(y^(2)) -(GM1.M3)/(y1^(2))](https://img.qammunity.org/2020/formulas/physics/high-school/1fg6guvnu797jd3nez5tx9f04g9i8zgxge.png)
- y = distance between masses M2 and M3 = 0.406/2 = 0.203
- y1 = distance between masses M1 and M3 = 0.406/2 = 0.203
- y = y1 = 0.203
net force =
![(GM3)((M2)/(y^(2)) -(M1)/(y1^(2)))](https://img.qammunity.org/2020/formulas/physics/high-school/oszdzznoaqtc4ljt0khbl70e3qtu5w0k6z.png)
net force =
![(6.62 x 10^(-11) x 50)((572)/(0.203^(2)) -(191)/(0.203^(2)))](https://img.qammunity.org/2020/formulas/physics/high-school/5grsar6afzbrd1gfi4ygv8ogo6nvr4d2vc.png)
net force =
![(6.62 x 10^(-11) x 50)(13880.5 - 4634.9)](https://img.qammunity.org/2020/formulas/physics/high-school/zro6jjb8pyd4nx4ikexl2fp03z8a69s5kc.png)
net force = 3.06 x 10^{-5} N