197k views
3 votes
Find the work done by the vector field F~ = x 2y~i + 1 3 x 3~j + xy~k along the curve of intersection C of the paraboloid z = y 2 − x 2 and the cylinder x 2 + y 2 = 1, oriented counterclockwise as viewed from the above.

User Rsaw
by
6.8k points

1 Answer

0 votes

Let
x=\cos t and
y=\sin t. Then
C can be parameterized by


\vec r(t)=\cos t\,\vec\imath+\sin t\,\vec\jmath+(\sin^2t-\cos^2t)\,\vec k

with
0\le t\le2\pi, and its derivative is


(\mathrm d\vec r)/(\mathrm dt)=-\sin t\,\vec\imath+\cos t\,\vec\jmath+4\sin t\cos t\,\vec k

Now,


\vec F(x,y,z)=x^2y\,\vec\imath+\frac{x^3}3\,\vec\jmath+xy\,\vec k


\implies\vec F(\vec r(t))=\cos^2t\sin t\,\vec\imath+\frac{\cos^3t}3\,\vec\jmath+\cos t\sin t\,\vec k

Then the work done by
\vec F along
C is


\displaystyle\int_C\vec F(x,y,z)\cdot\mathrm d\vec r=\int_0^(2\pi)\vec F(\vec r(t))\cdot(\mathrm d\vec r)/(\mathrm dt)\,\mathrm dt=\int_0^(2\pi)\left(3\cos^2t\sin^2t+\frac{\cos^4t}3\right)\,\mathrm dt=\boxed{\pi}

User Rob Shepherd
by
7.5k points