227k views
3 votes
Using the quadratic formula to solve 11x2 – 4x = 1, what are the values of x? StartFraction 2 Over 11 EndFraction plus-or-minus StartFraction StartRoot 15 EndRoot Over 11 EndFraction StartFraction 2 Over 11 EndFraction plus-or-minus StartFraction 2 StartRoot 15 EndRoot Over 11 EndFraction StartFraction 2 Over 11 EndFraction plus-or-minus StartFraction StartRoot 7 EndRoot Over 11 EndFraction StartFraction 2 Over 11 EndFraction plus-or-minus StartFraction StartRoot 7 EndRoot i Over 11 EndFraction

2 Answers

1 vote

Answer:

a on edg

Explanation:

took the test

User Alanionita
by
5.7k points
2 votes

Answer:


x=(2)/(11)\pm\frac{√(15)} {11}

Explanation:

we know that

The formula to solve a quadratic equation of the form


ax^(2) +bx+c=0

is equal to


x=\frac{-b\pm\sqrt{b^(2)-4ac}} {2a}

in this problem we have


11x^(2) -4x=1

equate to zero


11x^(2) -4x-1=0

so


a=11\\b=-4\\c=-1

substitute in the formula


x=\frac{-(-4)\pm\sqrt{-4^(2)-4(11)(-1)}} {2(11)}


x=\frac{4\pm√(60)} {22}


x=\frac{4\pm2√(15)} {22}


x=\frac{2\pm√(15)} {11}


x=(2)/(11)\pm\frac{√(15)} {11}

therefore

StartFraction 2 Over 11 EndFraction plus-or-minus StartFraction StartRoot 15 EndRoot Over 11 EndFraction

User Kapil Choubisa
by
5.6k points