Answer:
The total distance that the turtle traveled during the 5 seconds recorded is
![Distance \:traveled\approx 3.838\:(m)/(s)](https://img.qammunity.org/2020/formulas/mathematics/college/716rkvcqttfg2ezg128690hzyjnmete5ru.png)
Explanation:
To estimate distance traveled of an object moving in a straight line over a period of time, from discrete data on the velocity of the object, we use a Riemann Sum. If we have a table of values
![\left\begin{array}{ccccccc}time\:=\:t_i&t_0=0&t_1&t_2&...&t_n\\velocity\:=\:v(t_i)&v(t_0)&v(t_1)&v(t_2)&...&v(t_n)\end{array}\right](https://img.qammunity.org/2020/formulas/mathematics/college/ckmsjhaha6vtt9xw81jl3pscqgrsbn9mq1.png)
where
, then we can approximate the displacement on the interval
by
.
Therefore the distance traveled of the object over the time interval
can be approximated by
![Distance \:traveled\approx |v(t_1)|\Delta t+|v(t_2)|\Delta t+...+|v(t_n)|\Delta t](https://img.qammunity.org/2020/formulas/mathematics/college/7h60p1n4q1bc8m85pwbdjebli934l68x3u.png)
This is the right endpoint approximation.
We are given a table of values for v(t)
![\left\begin{array}{cccccccc}t(sec)&0&1&2&3&4&5\\v(t)&0.078&0.83&0.75&0.98&0.853&0.425\end{array}\right](https://img.qammunity.org/2020/formulas/mathematics/college/xz1cy4s2gi1b99f2iuhn7n007trxadwmb6.png)
Applying the right endpoint approximation formula we get,
![\Delta t = 1\sec](https://img.qammunity.org/2020/formulas/mathematics/college/5n7oqa92nuu3vli4mdiomgvjm9tvkv1p9n.png)
![Distance \:traveled\approx |v(t_1)|\Delta t+|v(t_2)|\Delta t+|v(t_3)|\Delta t+|v(t_4)|\Delta t+|v(t_5)|\Delta t\\\\Distance \:traveled\approx 0.83(1)+0.75(1)+0.98(1)+0.853(1)+0.425(1)\\\\Distance \:traveled\approx 3.838\:(m)/(s)](https://img.qammunity.org/2020/formulas/mathematics/college/22a3mu2rd2fifdjf3lkp69anz8jwxptwzb.png)
The total distance that the turtle traveled during the 5 seconds recorded is
![Distance \:traveled\approx 3.838\:(m)/(s)](https://img.qammunity.org/2020/formulas/mathematics/college/716rkvcqttfg2ezg128690hzyjnmete5ru.png)