Answer:
Part A → 7.82 atm
Part B → The unknown solution had the higher concentration
Part C → 0.83 mol/L
Step-by-step explanation:
Part A
Osmotic pressure (π) = M . R. T . i
NaCl → Na⁺ + Cl⁻ (i =2)
0.923 g of NaCl must be dissolved in 100 mL of solution.
0.923 g / 58.45 g/m = 0.016 moles
Molarity is mol/L → 0.016 m / 0.1L = 0.16M
π = 0.16M . 0.08206 L.atm/molK . 298K . 2 ⇒ 7.82atm
Part. B
The solvent moves toward the solution of higher concentration (to dilute it) until the two solutions have the same concentration, or until gravity overtakes the osmotic pressure, Π. If the level of the unknown solution drops when it was connected to solution in part A, we can be sure that had a higher concentration.
Part. C
π = M . R . T
20.1 atm = M . 0.08206 L.atm/mol.K . 294K
20.1 atm / (0.08206 L.atm/mol.K . 294K) = 0.83 mol/L