110k views
3 votes
Prove this identity sin^2θcsc^2θ=sin^2θ+cos^2θ by simplifying both sides of the equation.

User TreeWater
by
8.1k points

2 Answers

1 vote

Answer:

Explanation:


sin^2 \theta csc^2 \theta=sin^2\theta+cos^2 \theta\\L.H.S.=sin ^2\theta cos^2\theta=(sin^(2)\theta )/(sin ^(2)\theta ) =1\\R.H.S.=sin^(2) \theta+cos^(2) \theta=1\\L.H.S.=R.H.S

User Mateus Wolkmer
by
7.8k points
6 votes


\bf \begin{array}{rllll} sin^2(\theta )csc^2(\theta )&=&sin^2(\theta )+cos^2(\theta )\\\\ ~~\begin{matrix} sin^2(\theta ) \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ \cdot \cfrac{1^2}{~~\begin{matrix} sin^2(\theta ) \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }&=&1\\\\ 1^2&=&1\\ 1&=&1 \end{array}

User Jianjian Yang
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories