Answer:a) the probability that A.J. finishes in less than 900 minutes is 0.0125
b)the probability that M.J. finishes in less than 900 minutes is 0.0183
C) Find the probability that A.J. finishes before M.J. is 0.6915
Step-by-step explanation:
Let TA.j be the total time of A.j finishes all 20 jobs
Let Tm.j be the total time m.j finishes all 20 jobs .
Then by central limit theorem, TA.j and Tm.j has approximately a normal distribution.
E(TA.j) = 20×50=1000
Var(TA.j)= 20(10×10)=2000
E(Tm.j) = 20×52= 1040
Var(Tm.j)= 20(15×15)= 4500
a) P[TA.j <900]= [(TA.j -E(TA.j))/√(var(TA.j)]
Z< (900-1000)/√2000
Z<-2.24
Checking through a standardized normal table
The prob is 0.0125
b)p[Tm.j<900] = [Z< (900- 1040)/√4500]
Z < -2.08
The probability is 0.0183
C) p[( TA.j- Tm.j)- E( TA.j- Tm.j)]/√ (var(TA.j-Tm.j))
=[ 0 - E( TA.j- Tm.j)] / (var(TA.j-Tm.j))
= 0-(-40)/√6500
Z< 40/√6500
Z< 0.49613
Z< 0.6915