Answer:
a) 0.345
b) 0.005
Explanation:
We are given the following information in the question:
Mean, μ = 100
Standard Deviation, σ = 0.3
We are given that the distribution of lengths of lumber is a bell shaped distribution that is a normal distribution.
Formula:
![z_(score) = \displaystyle(x-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/college/5bpvqdbyqd8y38zhlcp80hz1p4ka5nivnl.png)
a) P(length greater than 100.12 inches)
P(x > 100.12)
![P( x > 100.12) = P( z > \displaystyle(100.12 - 100)/(0.3)) = P(z > 0.4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/9xbye8cez0fssqohnmnqy2ta8l3k2ms4d0.png)
![= 1 - P(z \leq 0.4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/at6qz8us66nzm5stg0qwc89kroqanqssaa.png)
Calculation the value from standard normal z table, we have,
![P(x > 100.12) = 1 - 0.655 = 0.345 = 34.5\%](https://img.qammunity.org/2020/formulas/mathematics/high-school/v0r43mx3wa6di71wntgaxvm1w18ekrmiaz.png)
b) Standard error due to sampling:
![\displaystyle(\sigma)/(√(n)) = (0.3)/(√(41)) = 0.0468](https://img.qammunity.org/2020/formulas/mathematics/high-school/timiqd14lqkaynwukdqet3dtrmmqprn9d5.png)
P(length greater than 100.12 inches for the sample)
P(x > 100.12)
![P( x > 100.12) = P( z > \displaystyle(100.12 - 100)/(0.0468)) = P(z > 2.564)](https://img.qammunity.org/2020/formulas/mathematics/high-school/v5bomgs0mb7sd53ce5965d8htuduwlhll2.png)
![= 1 - P(z \leq 2.564)](https://img.qammunity.org/2020/formulas/mathematics/high-school/8hk83k8styk4d57uhf03upwlmqmrdmvxq5.png)
Calculation the value from standard normal z table, we have,
![P(x > 100.12) = 1 - 0.995 = 0.005](https://img.qammunity.org/2020/formulas/mathematics/high-school/psbvqqb4neysne2uz1kghysu1r05a9vp7g.png)