Final answer:
The spring constant of the spring is approximately 234.50 N/m.
Step-by-step explanation:
To find the spring constant of the spring, we can use Hooke's Law, which states that the force exerted by a spring is proportional to the displacement of the spring from its equilibrium position. In this case, we know that the mass of the block is 6.7 kg and the displacement of the spring is 0.28 m. Therefore, we can use the equation F = kx, where F is the force, k is the spring constant, and x is the displacement. Plugging in the given values, we get:
F = kx
F = (6.7 kg)(9.8 m/s^2)
F = 65.66 N
65.66 N = k(0.28 m)
k = (65.66 N)/(0.28 m)
k ≈ 234.50 N/m
Therefore, the spring constant of the spring is approximately 234.50 N/m.