Answer:
Option A) About ±2.98 minutes
Explanation:
We are given the following information in the question:
Sample mean,
= 191.3 minutes
Sample size, n = 200
Population standard deviation, σ = 21.5 minutes
Alpha, α = 0.05
The leaders of the organization wish to develop an interval estimate with 95 percent confidence.
![z_(critical)\text{ at}~\alpha_(0.05) = \pm 1.96](https://img.qammunity.org/2020/formulas/mathematics/college/1n6i0tuzpp8yv38fdmtqbxv8kt5qs8up59.png)
Margin of error =
![z_{\text{critical}}* \displaystyle(\sigma)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/college/b8hektoq49g9h05gayc19wks0rzcnlr369.png)
Putting the values, we get:
![\pm 1.96* \displaystyle(21.5)/(√(200)) = \pm 2.9797 \approx \pm 2.98](https://img.qammunity.org/2020/formulas/mathematics/college/4a2lcnqm5jwlb7nncn2z48vycawzflg75k.png)
Option A) About ±2.98 minutes