Answer:
![\displaystyle |\vec{v_1}+\vec{v_2}|=4.15m](https://img.qammunity.org/2020/formulas/physics/middle-school/mboe44dm3s979qqqzhail08p89rfp4ordh.png)
Step-by-step explanation:
Sum of Vectors in the Plane
Given two vectors
![\displaystyle \vec{v_1}\ ,\ \vec{v_2}](https://img.qammunity.org/2020/formulas/physics/middle-school/a7jjb8w5kylw59h989fc0qbnbysnhuob8g.png)
They can be expressed in their rectangular components as
![\displaystyle \vec{v_1}=<x_1\ ,\ y_1>](https://img.qammunity.org/2020/formulas/physics/middle-school/alni7d0frcfdk9u91nv73b5q8n49cm95uq.png)
![\displaystyle \vec{v_2}=<x_2\ ,\ y_2>](https://img.qammunity.org/2020/formulas/physics/middle-school/6fw94eb3vb0dtrwykqenoqe6bl3tfbfnqz.png)
The sum of both vectors can be done by adding individually its components
![\displaystyle \vec{v_1}+\vec{v_2}=<x_1+x_2\ ,\ y_1+y_2>](https://img.qammunity.org/2020/formulas/physics/middle-school/fbnk4p8rfx4eddy8k24uyxd4em5js959h8.png)
If the vectors are given as a magnitude and an angle
, each component can be found as
![\displaystyle \vec{v_1}=<M_1 cos\theta_1\ ,\ M_1sin\theta _1>](https://img.qammunity.org/2020/formulas/physics/middle-school/v27u8wnw5l8dn6au82pkskljb3yi3nnf6m.png)
![\displaystyle \vec{v_2}=<M_2 cos\theta_2\ ,\ M_2sin\theta_2>](https://img.qammunity.org/2020/formulas/physics/middle-school/yr374j3ia14c9krf4wgkcza36435zp2vvs.png)
The first vector has a magnitude of 3.14 m and an angle of 30°, so
![\displaystyle \vec{v_1}=<3.14\ cos30^o,3.14\ sin30^o>](https://img.qammunity.org/2020/formulas/physics/middle-school/toavxpkihkj1d0l6zvjnodofgaaz118hwz.png)
![\displaystyle \vec{v_1}=<2.72,1.57>](https://img.qammunity.org/2020/formulas/physics/middle-school/f369nz4y77et3hfkuohuj1zjqxpww1h45o.png)
The second vector has a magnitude of 2.71 m and an angle of -60°, so
![\displaystyle \vec{v_2}=<2.71cos(-60^o),2.71sin(-60^o)>](https://img.qammunity.org/2020/formulas/physics/middle-school/rc0pkkyw85tlo65jdmldo80yt706oj4lii.png)
![\displaystyle \vec{v_2}=<1.36,-2.35>](https://img.qammunity.org/2020/formulas/physics/middle-school/21wgfrevsrmklzm1u52hkg0689j9g1rerb.png)
The sum of the vectors is
![\displaystyle \vec{v_1}+\vec{v_2}=<2.72+1.36,1.57-2.35>](https://img.qammunity.org/2020/formulas/physics/middle-school/jlxanfdvw0p56j8zxm2h3s65yjifiw44ay.png)
![\displaystyle \vec{v_1}-\vec{v_2}=<4.08,-0.78>](https://img.qammunity.org/2020/formulas/physics/middle-school/iquygc646fjwpqmtz1et1dodvpd2swde29.png)
Finally, we compute the magnitude of the sum
![\displaystyle |\vec{v_1}+\vec{v_2}|=√((4.08)^2+(-0.78)^2)](https://img.qammunity.org/2020/formulas/physics/middle-school/w0h9udxnz3b8s5aukn9ygye2n6lfds5q2t.png)
![\displaystyle |\vec{v_1}+\vec{v_2}|=√(17.25)](https://img.qammunity.org/2020/formulas/physics/middle-school/e5dw0vd53ceormzeqlt48x0nbc0w61gvn7.png)
![\displaystyle |\vec{v_1}+\vec{v_2}|=4.15m](https://img.qammunity.org/2020/formulas/physics/middle-school/mboe44dm3s979qqqzhail08p89rfp4ordh.png)