52.6k views
4 votes
Find the magnitude of the sum

of these two vectors::
14m
30.0°
60.00
magnitude (m)

Find the magnitude of the sum of these two vectors:: 14m 30.0° 60.00 magnitude (m-example-1
User JSantos
by
5.4k points

1 Answer

1 vote

Answer:


\displaystyle |\vec{v_1}+\vec{v_2}|=4.15m

Step-by-step explanation:

Sum of Vectors in the Plane

Given two vectors


\displaystyle \vec{v_1}\ ,\ \vec{v_2}

They can be expressed in their rectangular components as


\displaystyle \vec{v_1}=<x_1\ ,\ y_1>


\displaystyle \vec{v_2}=<x_2\ ,\ y_2>

The sum of both vectors can be done by adding individually its components


\displaystyle \vec{v_1}+\vec{v_2}=<x_1+x_2\ ,\ y_1+y_2>

If the vectors are given as a magnitude and an angle
(M\ ,\ \theta ), each component can be found as


\displaystyle \vec{v_1}=<M_1 cos\theta_1\ ,\ M_1sin\theta _1>


\displaystyle \vec{v_2}=<M_2 cos\theta_2\ ,\ M_2sin\theta_2>

The first vector has a magnitude of 3.14 m and an angle of 30°, so


\displaystyle \vec{v_1}=<3.14\ cos30^o,3.14\ sin30^o>


\displaystyle \vec{v_1}=<2.72,1.57>

The second vector has a magnitude of 2.71 m and an angle of -60°, so


\displaystyle \vec{v_2}=<2.71cos(-60^o),2.71sin(-60^o)>


\displaystyle \vec{v_2}=<1.36,-2.35>

The sum of the vectors is


\displaystyle \vec{v_1}+\vec{v_2}=<2.72+1.36,1.57-2.35>


\displaystyle \vec{v_1}-\vec{v_2}=<4.08,-0.78>

Finally, we compute the magnitude of the sum


\displaystyle |\vec{v_1}+\vec{v_2}|=√((4.08)^2+(-0.78)^2)


\displaystyle |\vec{v_1}+\vec{v_2}|=√(17.25)


\displaystyle |\vec{v_1}+\vec{v_2}|=4.15m

User Vayn
by
4.6k points