Answer:
0.5 m
14.00595
8 m/s, 0.0625 s
5.71314 m/s
Step-by-step explanation:
k = Spring constant = 128 N/m
A = Amplitude
E = Energy in spring = 16 J
Energy in spring is given by
![E=(1)/(2)kA^2\\\Rightarrow A=\sqrt{(2E)/(k)}\\\Rightarrow A=\sqrt{(2* 16)/(128)}\\\Rightarrow A=0.5\ m](https://img.qammunity.org/2020/formulas/physics/college/g6g8qkqql823npv6wea0s5q6cyjxttpvg9.png)
The amplitude is 0.5 m
Time period is given by
![T=2\pi\sqrt{(m)/(k)}\\\Rightarrow T=2\pi\sqrt{(0.5)/(128)}\\\Rightarrow T=0.39269\ s](https://img.qammunity.org/2020/formulas/physics/college/23qfo1ulshbagv9wte917mat02x2zzo24t.png)
Number of oscillations is given by
![N=(5.5)/(0.39269)\\\Rightarrow N=14.00595](https://img.qammunity.org/2020/formulas/physics/college/myc938wjek2e9qx0dykw8e25s57emrtsil.png)
The number of oscillations is 14.00595
For maximum speed
![(1)/(2)mv^2=16\\\Rightarrow v=\sqrt{(16* 2)/(0.5)}\\\Rightarrow v=8\ m/s](https://img.qammunity.org/2020/formulas/physics/college/i2rciy1vpzbsjb4i57bhft58ml3i07nkgm.png)
The maximum speed is 8 m/s
For a distance of 0.5 m which is the amplitude
![Time=(Distance)/(Speed)\\\Rightarrow Time=(0.5)/(8)\\\Rightarrow Time=0.0625\ s](https://img.qammunity.org/2020/formulas/physics/college/cv5tvrju0xcxi1n6pf847qn5cebzfpwq32.png)
The time taken would be 0.0625 s
The maximum kinetic energy is equal to the mechanical energy
![(1)/(2)mv^2+(1)/(2)kx^2=16](https://img.qammunity.org/2020/formulas/physics/college/dieymd0ztaude6cwhax0mn1hj2fn8r5jas.png)
At x = 0.35 m
![v=\sqrt{(16-(1)/(2)kx^2)/((1)/(2)m)}\\\Rightarrow v=\sqrt{(16-(1)/(2)128* 0.35^2)/((1)/(2)0.5)}\\\Rightarrow v=5.71314\ m/s](https://img.qammunity.org/2020/formulas/physics/college/kf51xq6dgc8446l3ymxx6q0zan5njl3o2b.png)
The speed of the block is 5.71314 m/s