64.7k views
5 votes
Simplify the polynomial

Simplify the polynomial-example-1
User Athul Nath
by
7.1k points

1 Answer

1 vote

Answer:


\large\tt\boxed{D. \ \tt -5j^(2)-5j+5}

Explanation:


\textsf{We are asked to simplify the Polynomial.}


\large\underline{\textsf{What is a Polynomial?}}


\textsf{A Polynomial is an \underline{expression} that is made up of 1 or more terms.}


\textsf{Terms can be a single whole number, variables, or a combination.}


\large\underline{\textsf{How to Simplify a Polynomial?}}


\textsf{There are a few ways to simplify a Polynomial. Let's identify them.}


\textsf{A way to simplify a polynomial is by using the Distributive Property.}


\textsf{Another way is to combine like terms.}


\textsf{For this problem, we will have to do both!}


\large\underline{\textsf{What is the Distributive Property?}}


\textsf{Distributive Property is a property that allows us to distribute a number left to a set}


\textsf{of parentheses inside the values of the parentheses.}


\underline{\textsf{How the Distributive Property works;}}


\textsf{Example;} \tt -2(x+y)


\textsf{-2 would multiply with x and y.}


\mathtt{ -2(x+y)=\boxed{-2x-2y}}


\large\underline{\textsf{What is Combining Like Terms?}}


\textsf{Combining Like Terms is a simple way to simplify an expression by adding/subtracting}


\textsf{like terms. This helps to make the expression much simpler.}


\textsf{Now, we should know how to simplify the given polynomial.}


\large\underline{\textsf{Solving;}}


\textsf{Begin by using the Distributive Property on the left side of the Polynomial.}


\textsf{Afterwards, Combine Like Terms.}


\large\underline{\textsf{Simplifying;}}


\tt -(5j^(2)+2j-7)-(3j+2)


\textsf{The negative sign on the left side of the parentheses is the same as -1. Turn terms}


\textsf{into their opposite value.}


\tt -(5j^(2)+2j-7) \rightarrow (-1 * 5j^(2))+(-1*2j)-(-1*-7)


\tt -(3j+2) \rightarrow (-1 *3j) + (-1 * 2)


\underline{\textsf{After Simplifying;}}


\tt -5j^(2)-2j+7-3j-2


\underline{\textsf{Combine All Like Terms;}}


\tt -5j^(2)\boxed{-2j}+7\boxed{-3j}-2


\tt -5j^(2)-5j\boxed{+7}\boxed{-2}


\large\tt\boxed{D. \ \tt -5j^(2)-5j+5}

User Hashken
by
7.5k points