Final answer:
The mean of the sampling distribution of the sample proportion is 0.30, and the standard deviation is found to be approximately 0.017. Therefore, the correct answer is Mean = 0.30, SD = 0.017.
Step-by-step explanation:
To determine the mean and standard deviation of the sampling distribution of the sample proportion p, we use the formulas related to binomial distributions, since the survey outcome (believe that performance-enhancing drugs are a problem or not) follows a binomial distribution. The mean of the sampling distribution of the proportion is simply the population proportion, which is given as 0.30.
The standard deviation (SD) of the sampling distribution of p can be calculated using the formula SD = √[p(1-p)/n], where p is the population proportion and n is the sample size. In this case:
SD = √[0.30(1-0.30)/750] = √[0.21/750] = √[0.00028] ≈ 0.0167
Thus, the correct answer is a) Mean = 0.30, SD = 0.017