53.6k views
3 votes
Prove that :( 1 + 1/
tan^(2)A)(1 + 1/
cot^(2)A) = 1/
sin^(2)A -
sin^(4)A

User Gnr
by
7.0k points

1 Answer

4 votes

Answer:

See explanation

Explanation:

Simplify left and right parts separately.

Left part:


\left(1+(1)/(\tan^2A)\right)\left(1+(1)/(\cot ^2A)\right)\\ \\=\left(1+(1)/((\sin^2A)/(\cos^2A))\right)\left(1+(1)/((\cos^2A)/(\sin^2A))\right)\\ \\=\left(1+(\cos^2A)/(\sin^2A)\right)\left(1+(\sin^2A)/(\cos^2A)\right)\\ \\=(\sin^2A+\cos^2A)/(\sin^2A)\cdot (\cos^2A+\sin^A)/(\cos^2A)\\ \\=(1)/(\sin^2A)\cdot (1)/(\cos^2A)\\ \\=(1)/(\sin^2A\cos^2A)

Right part:


(1)/(\sin^2A-\sin^4A)\\ \\=(1)/(\sin^2A(1-\sin^2A))\\ \\=(1)/(\sin^2A\cos^2A)

Since simplified left and right parts are the same, then the equality is true.

User Cyberwombat
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.