Answer:
68.829 N
Step-by-step explanation:
The given parameters are:
Weight of ladder,
= 120 N
Weight of object,
= 98 N
Angle,
= 53°
And we also know that, while
Length of ladder = L
Distance the object is placed = L/3
If we apply translational equilibrium horizontally, then
, so
![T = N](https://img.qammunity.org/2020/formulas/physics/high-school/5ed0ierfd12yn19m1pml2l872vh8qhrs70.png)
If we apply rotational equilibrium about the distance the object is placed, then
![W_o(L)/(3)cos(\theta) + W_l(L)/(2)cos(\theta) - NLsin(\theta) = 0\\2NLsin(\theta) = 2W_o(L)/(3)cos(\theta)+W_lLcos(\theta)\\2Tsin(\theta) = (2)/(3)W_ocos(\theta)+W_lLcos(\theta)\\T = (1)/(3)W_ocot(\theta) + (1)/(2)W_lcot(\theta)\\T = (1)/(3) * 98 * cot(53) + (1)/(2) * 120 * cot(53) = 69.829](https://img.qammunity.org/2020/formulas/physics/high-school/enop2xavbq7trq7w3y7ufh4efbrlvymtwu.png)