233k views
0 votes
Solve the following triangle. Given A=51 degrees b=40 c=45

User Jofre
by
5.4k points

1 Answer

2 votes

Answer:


a=36.87\ units


B=57.47^o


C=71.53^o

Explanation:

step 1

Find the length side a

Applying the law of cosines


a^2=b^2+c^2-2(b)(c)cos(A)

substitute the given values


a^2=40^2+45^2-2(40)(45)cos(51^o)


a^2=1,359.4466


a=36.87\ units

step 2

Find the measure of angle B

Applying the law of sines


(a)/(sin(A)) =(b)/(sin(B))

substitute the given values


(36.87)/(sin(51^o)) =(40)/(sin(B))


sin(B)=(sin(51^o))/(36.87){40}


B=sin^(-1)((sin(51^o))/(36.87){40})=57.47^o

step 3

Find the measure of angle C

Remember that the sum of the interior angles in any triangle must be equal to 180 degrees

so


A+B+C=180^o

substitute the given values


51^o+57.47^o+C=180^o


108.47^o+C=180^o


C=180^o-108.47^o=71.53^o

User Black Swan
by
5.7k points