Answer:
![\therefore \textrm{Area of Trapezoid }= 70x^(3)y^(2)\ cm^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rcld3fom1a560l7qi2xtq2nsuk7nuslpqv.png)
Explanation:
Given:
Shape is of Trapezoid
Height = 14xy² cm
Length 1 = 3x² cm ( one Parallel side)
Length 2 = 7x² cm ( other Parallel side)
To Find:
Area of Trapezoid = ?
Solution:
We know that
![\textrm{Area of Trapezoid }= 0.5(length\ 1+length\ 2)Height](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ajx2zdlahb21y4y472yy528fnvuhc85qhw.png)
substituting the given values we get
![\textrm{Area of Trapezoid }= 0.5*(3x^(2)+7x^(2))* 14xy^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8a6kk5gp56pnfhyvz696ah71se0fe0l2dw.png)
..((x^{a}x^{b}=x^{(a+b)})
![\therefore \textrm{Area of Trapezoid }= 70x^(3)y^(2)\ cm^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rcld3fom1a560l7qi2xtq2nsuk7nuslpqv.png)