487,637 views
10 votes
10 votes

\rm If \: \beta = \lim_(x \to0) \frac{ {e}^{ {x}^(3) } - (1 - {x}^(3) {)}^{ \frac{1}3 } + ((1 - {x}^(2) {)}^{ (1)/(2) } - 1) \sin x}{x \sin^(2) x} ,\\

then the value of
6 \beta is​

User Dracorat
by
3.1k points

1 Answer

20 votes
20 votes

Expand the limand as


(e^(x^3) - (1 - x^3)^(1/3) + \left((1-x^2)^(1/2) - 1\right) \sin(x))/(x \sin^2(x)) \\\\ ~~~~~~~~ = (e^(x^3) - (1-x^3)^(1/3))/(x^3) \cdot (x^2)/(\sin^2(x)) + ((1-x^2)^(1/2) - 1)/(x^2) \cdot (x)/(\sin(x))

Recall that for
a\\eq0,


\displaystyle \lim_(x\to0) (\sin(ax))/(ax) = 1

Then


\displaystyle \beta = \lim_(x\to0) \left( (e^(x^3) - (1-x^3)^(1/3))/(x^3) + ((1-x^2)^(1/2) - 1)/(x^2)\right)

Rationalize the numerators.


(e^(x^3) - (1-x^3)^(1/3))/(x^3) = (e^(3x^3) - (1 - x^3))/(x^3 \left(e^(2x^3) + e^(x^3) (1-x^3)^(1/3) + (1-x^3)^(2/3)\right)) \\\\ ~~~~~~~~~~~ = \left((e^(3x^3) - 1)/(x^3) + 1\right) \cdot\frac1{e^(2x^3) + e^(x^3) (1-x^3)^(1/3) + (1-x^3)^(2/3)}

and observe that


\frac1{e^(2x^3) + e^(x^3) (1-x^3)^(1/3) + (1-x^3)^(2/3)} \to \frac13


((1-x^2)^(1/2)-1)/(x^2) = ((1-x^2) - 1)/(x^2 \left((1-x^2)^(1/2) + 1\right)) \\\\ ~~~~~~~~ = -\frac1{(1-x^2)^(1/2) + 1} \to -\frac12

This leaves us with


\displaystyle \beta = \lim_(x\to0) (e^(3x^3) - 1)/(3x^3) - \frac16

The remaining limit is the derivative of
e^(3x^3) at
x=0, so its value is 1, and we find


\beta = 1 - \frac16 = \frac56 \implies 6\beta = \boxed{5}

User Yufei
by
3.1k points