186,445 views
31 votes
31 votes
Let
\beta be a real number. Consider the matrix
\rm A = \begin{bmatrix} \beta &0&1 \\ 2 &1& - 2 \\ 3&1& - 2\end{bmatrix} . If
\rm A^7 - ( \beta - 1) {A}^(6) - \beta {A}^5 is a singular matrix, then the value of
9\beta is​

User Abdellah OUMGHAR
by
2.6k points

1 Answer

21 votes
21 votes

Compute the characteristic polynomial of
A.


p(\lambda) = \det(A - \lambda I) \\\\ ~~~~~~~~ = \begin{vmatrix} \beta - \lambda & 0 & 1 \\ 2 & 1 - \lambda & -2 \\ 3 & 1 & -2-\lambda \end{vmatrix} \\\\ ~~~~~~~~ = (\beta-\lambda)\begin{vmatrix}1-\lambda&-2\\1&-2-\lambda\end{vmatrix} + \begin{vmatrix}2&1-\lambda \\ 3 & 1 \end{vmatrix} \\\\ ~~~~~~~~ = -\lambda^3 + (\beta-1) \lambda^2 + (\beta + 3) \lambda - 1

By the Cayley-Hamilton theorem,


p(A) = -A^3 + (\beta - 1) A^2 + (\beta + 3) A - I = 0

Note that


A^7 - (\beta - 1) A^6 - \beta A^5 \\\\ ~~~~~~~~ = -(-A^3 + (\beta - 1) A^2 + \beta A) A^4 \\\\ ~~~~~~~~ = -(\underbrace{-A^3 + (\beta - 1) A^2 + (\beta + 3) A - I}_(p(A)=0) - 3A + I) A^4 \\\\ ~~~~~~~~ = (3A - I) A^4

Recall that
\det(AB) = \det(A) \det(B). Note that
A is not singular, and hence
A^n is not singular for any natural
n.


\det(A) = \begin{vmatrix} \beta & 0 & 1 \\ 2 & 1 & -2 \\ 3 & 1 & -2 \end{vmatrix} \\\\ ~~~~~~~~ = \beta \begin{vmatrix}1&-2\\1&-2\end{vmatrix} + \begin{vmatrix}2&1\\3&1\end{vmatrix} \\\\ ~~~~~~~~ = -1 \\eq 0

Then
3A-I must be singular. So


\det(3A-I) = \begin{vmatrix} 3\beta - 1 & 0 & 3 \\ 6 & 2 & -6 \\ 9 & 3 & -7 \end{vmatrix} \\\\ ~~~~~~~~ = (3\beta-1) \begin{vmatrix}2&-6\\3&-7\end{vmatrix} + 3 \begin{vmatrix}6&2\\9&3\end{vmatrix} \\\\ ~~~~~~~~ = 4 (3\beta-1)


4(3\beta-1) = 0 \implies \beta = \frac13 \implies 9\beta = \boxed{3}

User Leandro Parice
by
3.2k points