Answer:
![x=125](https://img.qammunity.org/2022/formulas/mathematics/high-school/gxedwlcc3j7q0fia3ab3xkk18bfeo3up15.png)
Explanation:
We have the equation:
![\displaystyle \log_2{24}-\log_2{3}=\log_5x](https://img.qammunity.org/2022/formulas/mathematics/high-school/glz8jcbixeoqukji9k7rvtc1qf8orsx9du.png)
And we want to find the real value of x.
First, we can use the Quotient Property of Logarithms, which states:
![\displaystyle \log_ba-\log_bc=\log_b{(a)/(c)](https://img.qammunity.org/2022/formulas/mathematics/high-school/7st5wz1b6nsnquvfyf5opz7qnw0peyswtg.png)
Therefore, we can rewrite our left-hand side as:
![\displaystyle \Rightarrow \log_2{(24)/(3)}=\log_5x](https://img.qammunity.org/2022/formulas/mathematics/high-school/4gx8rzqkg9id0b5jilrm0ihpj7fdhtphf5.png)
Divide:
![\log_28=\log_5x](https://img.qammunity.org/2022/formulas/mathematics/high-school/s00sojjllpla6baoga7t8p0jz1l4egs3e0.png)
Evaluate the left-hand side (2³=8).
![3=\log_5x](https://img.qammunity.org/2022/formulas/mathematics/high-school/dydc8lmtdo43r43byijbmnwvif3488yash.png)
By the definition of a logarithm, this means that:
![5^3=x](https://img.qammunity.org/2022/formulas/mathematics/high-school/cf9m58d7pg650zc0bkd1vfvyiaom4ct08y.png)
Evaluate:
![x=125](https://img.qammunity.org/2022/formulas/mathematics/high-school/gxedwlcc3j7q0fia3ab3xkk18bfeo3up15.png)
Our final answer is 125.